Example #1
0
 def process(self):
     if self.input_.trajectory:
         while True:
             self.output.pose = self.current_target()
             if self.dist_to_target() > self.error:
                 break
             self.traj_idx += 1
             if self.traj_idx > len(self.input_.trajectory):
                 break
         draw.draw_pose(self.state.env, self.output.pose)
 def process(self):
     if self.input_.trajectory:
         while True:
             self.output.pose = self.current_target()
             if self.dist_to_target() > self.error:
                 break
             self.traj_idx += 1
             if self.traj_idx > len(self.input_.trajectory):
                 break
         draw.draw_pose(self.state.env, self.output.pose)
Example #3
0
    def follow(self, traj):
        if self.params.physics:
            command = addict.Dict()
            command.trajectory = []

            for t in traj:
                pose = addict.Dict(x=t[0], y=t[1], z=t[2], yaw=t[5])
                command.trajectory.append(pose)

            self.run(command)
        else:
            for (i, row) in enumerate(traj):
                self.robot.SetActiveDOFValues(row)
                draw.draw_pose(self.env, row)
                time.sleep(self.params.timestep)
Example #4
0
    def follow(self, traj):
        if self.params.physics:
            command = addict.Dict()
            command.trajectory = []

            for t in traj:
                pose = addict.Dict(x=t[0], y=t[1], z=t[2], yaw=t[5])
                command.trajectory.append(pose)

            self.run(command)
        else:
            for (i, row) in enumerate(traj):
                self.robot.SetActiveDOFValues(row)
                draw.draw_pose(self.env, row)
                time.sleep(self.params.timestep)
    def run(self):
        while True:
            start = self.robot.GetActiveDOFValues()
            goal = self.collision_free(self.random_goal)
            draw.draw_pose(self.env, goal, reset=True)
            draw.draw_trajectory(self.env, None, reset=True)

            with self.robot:
                if self.verbose:
                    print 'planning to: {}'.format(goal)
                traj, cost = self.planner.plan(start, goal)
            if traj is not None:
                time.sleep(1)
                draw.draw_trajectory(self.env, traj, reset=True)
                if self.verbose:
                    utils.pv('traj', 'cost')
                self.execute_trajectory(traj)

            time.sleep(1)
Example #6
0
    def run(self):
        while True:
            start = self.robot.GetActiveDOFValues()
            goal = self.collision_free(self.random_goal)
            draw.draw_pose(self.env, goal, reset=True)
            draw.draw_trajectory(self.env, None, reset=True)

            with self.robot:
                if self.verbose:
                    print 'planning to: {}'.format(goal)
                traj, cost = self.planner.plan(start, goal)
            if traj is not None:
                time.sleep(1)
                draw.draw_trajectory(self.env, traj, reset=True)
                if self.verbose:
                    utils.pv('traj', 'cost')
                self.execute_trajectory(traj)

            time.sleep(1)
Example #7
0
    print("Found", len(files), "files")

    images = [cv2.imread(os.path.join(args.input, f)) for f in files]
    data = []
    for image in images:
        # Create new datum
        datum = op.Datum()
        datum.cvInputData = image
        datum.handRectangles = [
            # Left/Right hands person 0
            [
                op.Rectangle(0., 0., 0., 0.),
                op.Rectangle(0, 0, image.shape[0], image.shape[1]),
            ],
        ]
        data.append(datum)
        get_hand_detector().emplaceAndPop([datum])

    for f, image, datum in zip(files, images, data):
        pose = [[float(x) for x in r][:2]
                for r in np.array(datum.handKeypoints[1][0], dtype=np.float16)]
        print(pose)

        save_loc = os.path.join(args.output, f)
        if args.format == "json":
            json.dump(pose, open(save_loc + ".json", "w"))
        else:
            new_image = draw_pose(image, pose)
            cv2.imwrite(save_loc, new_image)