def process(self): if self.input_.trajectory: while True: self.output.pose = self.current_target() if self.dist_to_target() > self.error: break self.traj_idx += 1 if self.traj_idx > len(self.input_.trajectory): break draw.draw_pose(self.state.env, self.output.pose)
def follow(self, traj): if self.params.physics: command = addict.Dict() command.trajectory = [] for t in traj: pose = addict.Dict(x=t[0], y=t[1], z=t[2], yaw=t[5]) command.trajectory.append(pose) self.run(command) else: for (i, row) in enumerate(traj): self.robot.SetActiveDOFValues(row) draw.draw_pose(self.env, row) time.sleep(self.params.timestep)
def run(self): while True: start = self.robot.GetActiveDOFValues() goal = self.collision_free(self.random_goal) draw.draw_pose(self.env, goal, reset=True) draw.draw_trajectory(self.env, None, reset=True) with self.robot: if self.verbose: print 'planning to: {}'.format(goal) traj, cost = self.planner.plan(start, goal) if traj is not None: time.sleep(1) draw.draw_trajectory(self.env, traj, reset=True) if self.verbose: utils.pv('traj', 'cost') self.execute_trajectory(traj) time.sleep(1)
print("Found", len(files), "files") images = [cv2.imread(os.path.join(args.input, f)) for f in files] data = [] for image in images: # Create new datum datum = op.Datum() datum.cvInputData = image datum.handRectangles = [ # Left/Right hands person 0 [ op.Rectangle(0., 0., 0., 0.), op.Rectangle(0, 0, image.shape[0], image.shape[1]), ], ] data.append(datum) get_hand_detector().emplaceAndPop([datum]) for f, image, datum in zip(files, images, data): pose = [[float(x) for x in r][:2] for r in np.array(datum.handKeypoints[1][0], dtype=np.float16)] print(pose) save_loc = os.path.join(args.output, f) if args.format == "json": json.dump(pose, open(save_loc + ".json", "w")) else: new_image = draw_pose(image, pose) cv2.imwrite(save_loc, new_image)