def main(args): maxStep = int(raw_input("Type in the length of time steps (maxStep): ")) # the length of time steps starting from each initial state Nbr_States = 2 # the number of all possible states of a node historyLength = int(raw_input("Type in the length of history states (h): ")) # the length of history states ## 1. Network Information from Data File ## random_network = str(raw_input("Type l for local random, g for global random: ")) NODE_FILE = 'net-nodes.dat' # Asks user if network has been damaged. damage = raw_input("Type in 1 for DNA damage and 0 for no damage: ") # Asks user if there has been a node deletion. node_delete = str(raw_input("Type in node for deletion or none for no deletion: ")) # Asks user if there has been a single edge link deletion. u = str(raw_input("Type in upstream node of edge for deletion or none for no deletion: ")) if u != 'none': v = str(raw_input("Type in downstream node of edge for deletion: ")) edge_delete = u,v else: edge_delete = u for i in range(10): ran_network_filename = i if random_network == 'g': EDGE_FILE = 'p53-gr%s.dat'%(ran_network_filename) elif random_network == 'l': EDGE_FILE = 'p53-lr%s.dat'%(ran_network_filename) ## 2. To Build net and nodes_list: Module 'input_net' is required ## net = inet.read_network_from_file(EDGE_FILE, NODE_FILE, node_delete, edge_delete) nodes_list = inet.build_nodes_list(NODE_FILE, node_delete) ## 5. To generate time series data from 1, 2 and 3: Modules 'time_evol' and 'updating_rule' are required ## timeSeries_Type = ['all_initial'] # 'all_initial', 'primary_attractor', 'one_trajectory' if 'all_initial' in timeSeries_Type: ## 5-1. time series for all possible initial network states. Nbr_All_Initial_States = np.power(Nbr_States, len(nodes_list)) # the number of initial states of the network timeSeriesAll = tev.time_series_all(net, nodes_list, damage, Nbr_All_Initial_States, Nbr_States, maxStep) # To generate time series data over all possible initial states if 'primary_attractor' in timeSeries_Type: ## 5-2. time series for initial network states that converge to primary (or biological) attractor decStateTransMap = tev.net_state_transition(net, nodes_list, Nbr_States) # To build transition map between network states over network state space attractors = tev.find_attractor(decStateTransMap) # To find attractors ==> attractors = {attractor state1: {'type': 'fixed', 'basin-size': 2, 'basin': [network state a, network state b]}, attractor state2: {}, ... } primary_attractor = attractors.keys()[0] #attractors is ordered with basin size from the function "find_attractor" and hence primary attractor is the first one. Initial_States_List = list(attractors[primary_attractor]['basin']) # To assign all initial states in the basin of primary attractor to the list of initail states timeSeriesPa = tev.time_series_pa(net, nodes_list, Initial_States_List, Nbr_States, maxStep) # To generate time series data over all initial states that converge to the primary attractor if 'one_trajectory' in timeSeries_Type: ## 5-3. time sereis for one initial network state InitBiState = { 'SK': 1, 'Cdc2_Cdc13': 0, 'Ste9': 1, 'Rum1': 1, 'Slp1': 0, 'Cdc2_Cdc13_active': 0, 'Wee1_Mik1': 1, 'Cdc25': 0, 'PP': 0 } # initial state for fission yeast #InitBiState = {'Cln3': 1, 'MBF':0, 'SBF': 0, 'Cln1_2':0, 'Cdh1':1, 'Swi5':0, 'Cdc20_Cdc14':0, 'Clb5_6':0, 'Sic1': 1, 'Clb1_2':0, 'Mcm1_SFF':0} # initial state for budding yeast timeSeriesOne = tev.time_series_one(net, nodes_list, InitBiState, Nbr_States, maxStep) # To generate time series data for one particular initial state ''' The format for timeSeries ==> timeSeries = { node1: {1st initial_state: [0,1,1, ......, 0], ...... , Nth initial_state: [1,0,1, ......, 1]}, node 2: {1st initial_state: [1,1,1, ......, 0], ...... , Nth initial_state: [1,0,0, ......, 0]}, .......} ==> timeSeries[node2][initial_state 1] = [1,1,1, ......, 0] ''' ## 4. Output files ## #result_ai = open('../results/fission-net/ai-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') #result_te = open('../results/fission-net/te-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') ## 6. To measure active information (AI) and transfer entropy (TE): using 'compute_AI' and 'compute_TE' from Module 'info_dyn" ## ## 6-1. For all possible initial network states if 'all_initial' in timeSeries_Type: ## 6-1-a. To compute AI if random_network == 'n': result_ai_all = open('ai-all-step%d-h%d-%s.dat'%(maxStep, historyLength,damage),'w') elif random_network == 'g': result_ai_all = open('ai-all-step%d-h%d-gr%s-%s.dat'%(maxStep, historyLength, ran_network_filename,damage),'w') elif random_network == 'l': result_ai_all = open('ai-all-step%d-h%d-lr%s-%s.dat'%(maxStep, historyLength, ran_network_filename,damage),'w') AI_all = {} for n in nodes_list: AI_all[n] = info.compute_AI(timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_ai_all.write('%s\t%f\n'%(n, AI_all[n])) print n, AI_all[n] ## 6-1-b. To compute TE if random_network == 'n': result_te_all = open('te-all-step%d-h%d-%s.dat'%(maxStep, historyLength,damage),'w') elif random_network == 'g': result_te_all = open('te-all-step%d-h%d-gr%s-%s.dat'%(maxStep, historyLength, ran_network_filename,damage),'w') elif random_network == 'l': result_te_all = open('te-all-step%d-h%d-lr%s-%s.dat'%(maxStep, historyLength, ran_network_filename,damage),'w') TE_all = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_all[(v, n)] = info.compute_TE(timeSeriesAll[v], timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_te_all.write('%s\t%s\t%f\n'%(v, n,TE_all[(v, n)] )) print v, n,TE_all[(v, n)] result_file_name = 'ai-all-scale-step%d-h%d-%sr%s-%s.dat'%(maxStep, historyLength, random_network, ran_network_filename,damage) viz_file_name = 'ai-all-scale-step%d-h%d-%sr%s-%s.pdf'%(maxStep, historyLength, random_network, ran_network_filename,damage) draw_plots.plot_AI_scale(AI_all, result_file_name, viz_file_name) result_file_name = 'te-all-scale-step%d-h%d-%sr%s-%s.dat'%(maxStep, historyLength, random_network, ran_network_filename,damage) viz_file_name = 'te-all-scale-step%d-h%d-%sr%s-%s.pdf'%(maxStep, historyLength, random_network, ran_network_filename,damage) draw_plots.plot_TE_scale(TE_all, result_file_name, viz_file_name) ## 6-2. For initial network states that converge to the primary attractor if 'primary_attractor' in timeSeries_Type: ## 6-2-a. To compute AI result_ai_pa = open('../results/fission-net/ai-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_pa = {} for n in nodes_list: AI_pa[n] = info.compute_AI(timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_ai_pa.write('%s\t%f\n'%(n, AI_pa[n])) ## 6-2-b. To compute TE result_te_pa = open('../results/fission-net/te-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_pa = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_pa[(v, n)] = info.compute_TE(timeSeriesPa[v], timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_te_pa.write('%s\t%s\t%f\n'%(v, n,TE_pa[(v, n)] )) ## 6-2-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_pa, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-2-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_pa, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-3. For a particular initial network state if 'one_trajectory' in timeSeries_Type: ## 6-3-a. To compute AI result_ai_one = open('../results/fission-net/ai-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_one = {} for n in nodes_list: AI_one[n] = info.compute_AI(timeSeriesOne[n], historyLength, 1, Nbr_States) result_ai_one.write('%s\t%f\n'%(n, AI_one[n])) ## 6-3-b. To compute TE result_te_one = open('../results/fission-net/te-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_one = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_one[(v, n)] = info.compute_TE(timeSeriesOne[v], timeSeriesOne[n], historyLength, 1, Nbr_States) result_te_one.write('%s\t%s\t%f\n'%(v, n,TE_one[(v, n)] )) ## 6-3-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_one, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-3-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_one, result_file_name, viz_file_name) ### plot and result file for TE scale
def main(args): maxStep = 10 # the length of time steps starting from each initail state Nbr_States = 2 # the number of all possible states of a node historyLength = 1 # the length of history states ## 1. Network Information from Data File ## EDGE_FILE = 'C:\Users\Kelle Dhein\C.-elegans\example\SES591_SampleCode\data\elegans\elegans-net-edges-new-names.dat' NODE_FILE = 'C:\Users\Kelle Dhein\C.-elegans\example\SES591_SampleCode\data\elegans\elegans-net-nodes-new-names.dat' #EDGE_FILE = '../data/budding-net/budding-net-edges.txt' #NODE_FILE = '../data/budding-net/budding-net-nodes.txt' ## 2. To Build net and nodes_list: Module 'input_net' is required ## net = inet.read_network_from_file(EDGE_FILE, NODE_FILE) nodes_list = inet.build_nodes_list(NODE_FILE) ## 5. To generate time series data from 1, 2 and 3: Modules 'time_evol' and 'updating_rule' are required ## timeSeries_Type = ['one_trajectory'] # 'all_initial', 'primary_attractor', 'one_trajectory' if 'all_initial' in timeSeries_Type: ## 5-1. time series for all possible initial network states. Nbr_All_Initial_States = np.power(Nbr_States, len(nodes_list)) # the number of initial states of the network timeSeriesAll = tev.time_series_all(net, nodes_list, Nbr_All_Initial_States, Nbr_States, maxStep) # To generate time series data over all possible initial states if 'primary_attractor' in timeSeries_Type: ## 5-2. time series for initial network states that converge to primary (or biological) attractor decStateTransMap = tev.net_state_transition(net, nodes_list, Nbr_States) # To build transition map between network states over network state space attractors = tev.find_attractor(decStateTransMap) # To find attractors ==> attractors = {attractor state1: {'type': 'fixed', 'basin-size': 2, 'basin': [network state a, network state b]}, attractor state2: {}, ... } primary_attractor = attractors.keys()[0] #attractors is ordered with basin size from the function "find_attractor" and hence primary attractor is the first one. Initial_States_List = list(attractors[primary_attractor]['basin']) # To assign all initial states in the basin of primary attractor to the list of initail states timeSeriesPa = tev.time_series_pa(net, nodes_list, Initial_States_List, Nbr_States, maxStep) # To generate time series data over all initial states that converge to the primary attractor if 'one_trajectory' in timeSeries_Type: ## 5-3. time sereis for one initial network state InitBiState = { 'cdk-2/cyclinE': 1, 'cki-1': 1, 'cdc-14/fzy-1': 1, 'fzr-1': 1, 'cdk-1/cyclinB': 0, 'lin-35/efl-1/dpl-1': 1, 'cul-1/lin-23': 0, 'cdc-25.1': 0 } # initial state for fission yeast #InitBiState = {'Cln3': 1, 'MBF':0, 'SBF': 0, 'Cln1_2':0, 'Cdh1':1, 'Swi5':0, 'Cdc20_Cdc14':0, 'Clb5_6':0, 'Sic1': 1, 'Clb1_2':0, 'Mcm1_SFF':0} # initial state for budding yeast timeSeriesOne = tev.time_series_one(net, nodes_list, InitBiState, Nbr_States, maxStep) # To generate time series data for one particular initial state ''' The format for timeSeries ==> timeSeries = { node1: {1st initial_state: [0,1,1, ......, 0], ...... , Nth initial_state: [1,0,1, ......, 1]}, node 2: {1st initial_state: [1,1,1, ......, 0], ...... , Nth initial_state: [1,0,0, ......, 0]}, .......} ==> timeSeries[node2][initial_state 1] = [1,1,1, ......, 0] ''' ## 4. Output files ## #result_ai = open('../results/fission-net/ai-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') #result_te = open('../results/fission-net/te-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') ## 6. To measure active information (AI) and transfer entropy (TE): using 'compute_AI' and 'compute_TE' from Module 'info_dyn" ## ## 6-1. For all possible initial network states if 'all_initial' in timeSeries_Type: ## 6-1-a. To compute AI result_ai_all = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Ai-all-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_all = {} for n in nodes_list: AI_all[n] = info.compute_AI(timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_ai_all.write('%s\t%f\n'%(n, AI_all[n])) print n, AI_all[n] ## 6-1-b. To compute TE result_te_all = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Te-all-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_all = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_all[(v, n)] = info.compute_TE(timeSeriesAll[v], timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_te_all.write('%s\t%s\t%f\n'%(v, n,TE_all[(v, n)] )) print v, n,TE_all[(v, n)] ## 6-1-c. Scale behavior for AI (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Ai-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Ai-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_all, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-1-d. Scale behavior for TE (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Te-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\All_Initial\Te-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_all, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-2. For initial network states that converge to the primary attractor if 'primary_attractor' in timeSeries_Type: ## 6-2-a. To compute AI result_ai_pa = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Ai-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_pa = {} for n in nodes_list: AI_pa[n] = info.compute_AI(timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_ai_pa.write('%s\t%f\n'%(n, AI_pa[n])) ## 6-2-b. To compute TE result_te_pa = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Te-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_pa = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_pa[(v, n)] = info.compute_TE(timeSeriesPa[v], timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_te_pa.write('%s\t%s\t%f\n'%(v, n,TE_pa[(v, n)] )) ## 6-2-c. Scale behavior for AI (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Ai-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Ai-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_pa, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-2-d. Scale behavior for TE (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Te-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Primary_Attractor\Te-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_pa, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-3. For a particular initial network state if 'one_trajectory' in timeSeries_Type: ## 6-3-a. To compute AI result_ai_one = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Node_73_to_AltBio\Ai-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_one = {} for n in nodes_list: AI_one[n] = info.compute_AI(timeSeriesOne[n], historyLength, 1, Nbr_States) result_ai_one.write('%s\t%f\n'%(n, AI_one[n])) ## 6-3-b. To compute TE result_te_one = open('C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\Node_73_to_AltBio\Te-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_one = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_one[(v, n)] = info.compute_TE(timeSeriesOne[v], timeSeriesOne[n], historyLength, 1, Nbr_States) result_te_one.write('%s\t%s\t%f\n'%(v, n,TE_one[(v, n)] )) ## 6-3-c. Scale behavior for AI (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\One_Trajectory\Ai-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\One_Trajectory\Ai-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_one, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-3-d. Scale behavior for TE (optional) result_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\One_Trajectory\Te-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = 'C:\Users\Kelle Dhein\C.-elegans\FinalCodes_Hyunju\Results\One_Trajectory\Te-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_one, result_file_name, viz_file_name) ### plot and result file for TE scale
def main(args): maxStep = 20 # the length of time steps starting from each initail state Nbr_States = 2 # the number of all possible states of a node historyLength = 5 # the length of history states ## 1. Network Information from Data File ## EDGE_FILE = '../data/fission-net/fission-net-edges.txt' NODE_FILE = '../data/fission-net/fission-net-nodes.txt' #EDGE_FILE = '../data/budding-net/budding-net-edges.txt' #NODE_FILE = '../data/budding-net/budding-net-nodes.txt' ## 2. To Build net and nodes_list: Module 'input_net' is required ## net = inet.read_network_from_file(EDGE_FILE, NODE_FILE) nodes_list = inet.build_nodes_list(NODE_FILE) ## 5. To generate time series data from 1, 2 and 3: Modules 'time_evol' and 'updating_rule' are required ## timeSeries_Type = ['all_initial'] # 'all_initial', 'primary_attractor', 'one_trajectory' if 'all_initial' in timeSeries_Type: ## 5-1. time series for all possible initial network states. Nbr_All_Initial_States = np.power(Nbr_States, len(nodes_list)) # the number of initial states of the network timeSeriesAll = tev.time_series_all(net, nodes_list, Nbr_All_Initial_States, Nbr_States, maxStep) # To generate time series data over all possible initial states if 'primary_attractor' in timeSeries_Type: ## 5-2. time series for initial network states that converge to primary (or biological) attractor decStateTransMap = tev.net_state_transition(net, nodes_list, Nbr_States) # To build transition map between network states over network state space attractors = tev.find_attractor(decStateTransMap) # To find attractors ==> attractors = {attractor state1: {'type': 'fixed', 'basin-size': 2, 'basin': [network state a, network state b]}, attractor state2: {}, ... } primary_attractor = attractors.keys()[0] #attractors is ordered with basin size from the function "find_attractor" and hence primary attractor is the first one. Initial_States_List = list(attractors[primary_attractor]['basin']) # To assign all initial states in the basin of primary attractor to the list of initail states timeSeriesPa = tev.time_series_pa(net, nodes_list, Initial_States_List, Nbr_States, maxStep) # To generate time series data over all initial states that converge to the primary attractor if 'one_trajectory' in timeSeries_Type: ## 5-3. time sereis for one initial network state InitBiState = { 'SK': 1, 'Cdc2_Cdc13': 0, 'Ste9': 1, 'Rum1': 1, 'Slp1': 0, 'Cdc2_Cdc13_active': 0, 'Wee1_Mik1': 1, 'Cdc25': 0, 'PP': 0 } # initial state for fission yeast #InitBiState = {'Cln3': 1, 'MBF':0, 'SBF': 0, 'Cln1_2':0, 'Cdh1':1, 'Swi5':0, 'Cdc20_Cdc14':0, 'Clb5_6':0, 'Sic1': 1, 'Clb1_2':0, 'Mcm1_SFF':0} # initial state for budding yeast timeSeriesOne = tev.time_series_one(net, nodes_list, InitBiState, Nbr_States, maxStep) # To generate time series data for one particular initial state ''' The format for timeSeries ==> timeSeries = { node1: {1st initial_state: [0,1,1, ......, 0], ...... , Nth initial_state: [1,0,1, ......, 1]}, node 2: {1st initial_state: [1,1,1, ......, 0], ...... , Nth initial_state: [1,0,0, ......, 0]}, .......} ==> timeSeries[node2][initial_state 1] = [1,1,1, ......, 0] ''' ## 4. Output files ## #result_ai = open('../results/fission-net/ai-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') #result_te = open('../results/fission-net/te-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') ## 6. To measure active information (AI) and transfer entropy (TE): using 'compute_AI' and 'compute_TE' from Module 'info_dyn" ## ## 6-1. For all possible initial network states if 'all_initial' in timeSeries_Type: ## 6-1-a. To compute AI result_ai_all = open('../results/fission-net/ai-all-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_all = {} for n in nodes_list: AI_all[n] = info.compute_AI(timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_ai_all.write('%s\t%f\n'%(n, AI_all[n])) print n, AI_all[n] ## 6-1-b. To compute TE result_te_all = open('../results/fission-net/te-all-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_all = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_all[(v, n)] = info.compute_TE(timeSeriesAll[v], timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_te_all.write('%s\t%s\t%f\n'%(v, n,TE_all[(v, n)] )) print v, n,TE_all[(v, n)] ## 6-1-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_all, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-1-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_all, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-2. For initial network states that converge to the primary attractor if 'primary_attractor' in timeSeries_Type: ## 6-2-a. To compute AI result_ai_pa = open('../results/fission-net/ai-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_pa = {} for n in nodes_list: AI_pa[n] = info.compute_AI(timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_ai_pa.write('%s\t%f\n'%(n, AI_pa[n])) ## 6-2-b. To compute TE result_te_pa = open('../results/fission-net/te-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_pa = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_pa[(v, n)] = info.compute_TE(timeSeriesPa[v], timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_te_pa.write('%s\t%s\t%f\n'%(v, n,TE_pa[(v, n)] )) ## 6-2-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_pa, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-2-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-pa-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-pa-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_pa, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-3. For a particular initial network state if 'one_trajectory' in timeSeries_Type: ## 6-3-a. To compute AI result_ai_one = open('../results/fission-net/ai-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_one = {} for n in nodes_list: AI_one[n] = info.compute_AI(timeSeriesOne[n], historyLength, 1, Nbr_States) result_ai_one.write('%s\t%f\n'%(n, AI_one[n])) ## 6-3-b. To compute TE result_te_one = open('../results/fission-net/te-one-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') TE_one = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_one[(v, n)] = info.compute_TE(timeSeriesOne[v], timeSeriesOne[n], historyLength, 1, Nbr_States) result_te_one.write('%s\t%s\t%f\n'%(v, n,TE_one[(v, n)] )) ## 6-3-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_one, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-3-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-one-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-one-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_one, result_file_name, viz_file_name) ### plot and result file for TE scale ## to obtain biological sequence for the Fission Yeast Cell-Cycle Net starting from biological inital state EDGE_FILE = '../data/fission-net/fission-net-edges.txt' NODE_FILE = '../data/fission-net/fission-net-nodes.txt' BIO_INIT_FILE = '../data/fission-net/fission-net-bioSeq-initial.txt' net = inet.read_network_from_file(EDGE_FILE, NODE_FILE) nodes_list = inet.build_nodes_list(NODE_FILE) #input_file_name1 = 'time-series/%s-step%d-trans0.dat'%(network_index, maxStep) #input_file1 = open( input_file_name1, 'r') Nbr_Initial_States = np.power(2,len(nodes_list)) maxStep = 20 Nbr_States = 2 historyLength = 5 result_ai = open('../results/fission-net/ai-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') result_te = open('../results/fission-net/te-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') timeSeries = tev.time_series_all(net, nodes_list, Nbr_Initial_States, Nbr_States, MAX_TimeStep=20) print 'AI' AI = {} for n in nodes_list: AI[n] = info.compute_AI(timeSeries[n], historyLength, Nbr_Initial_States, Nbr_States) result_ai.write('%s\t%f\n'%(n, AI[n])) print n, AI[n] print 'done AI' print 'TE' TE = defaultdict(float) for v in nodes_list: for n in nodes_list: TE[(v, n)] = info.compute_TE(timeSeries[v], timeSeries[n], historyLength, Nbr_Initial_States, Nbr_States) result_te.write('%s\t%s\t%f\n'%(v, n,TE[(v, n)] )) print v, n, TE[(v, n)] print 'done TE'
TE_all = defaultdict(float) for v in nodes_list: for n in nodes_list: TE_all[(v, n)] = info.compute_TE(timeSeriesAll[v], timeSeriesAll[n], historyLength, Nbr_All_Initial_States, Nbr_States) result_te_all.write('%s\t%s\t%f\n'%(v, n,TE_all[(v, n)] )) print v, n,TE_all[(v, n)] ## 6-1-c. Scale behavior for AI (optional) result_file_name = '../results/fission-net/ai-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/ai-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_AI_scale(AI_all, result_file_name, viz_file_name) ### plot and result file for AI scale ## 6-1-d. Scale behavior for TE (optional) result_file_name = '../results/fission-net/te-all-scale-step%d-trans0-h%d.dat'%(maxStep, historyLength) viz_file_name = '../viz/fission-net/te-all-scale-step%d-trans0-h%d.pdf'%(maxStep, historyLength) draw_plots.plot_TE_scale(TE_all, result_file_name, viz_file_name) ### plot and result file for TE scale ## 6-2. For initial network states that converge to the primary attractor if 'primary_attractor' in timeSeries_Type: ## 6-2-a. To compute AI result_ai_pa = open('../results/fission-net/ai-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w') AI_pa = {} for n in nodes_list: AI_pa[n] = info.compute_AI(timeSeriesPa[n], historyLength, len(Initial_States_List), Nbr_States) result_ai_pa.write('%s\t%f\n'%(n, AI_pa[n])) ## 6-2-b. To compute TE result_te_pa = open('../results/fission-net/te-pa-step%d-trans0-h%d.dat'%(maxStep, historyLength),'w')