def initiate(): IM_SIZE = 2 # 80 N_CHANEL = 9 # this is the representation of a block by 9 blocks K = 6 # env.action_space.n D = IM_SIZE * N_CHANEL hidden_layer_sizes = [128, 64, 32] gamma = 0.5 # number of random test batch_sz = 32 count = 0 tf.reset_default_graph() model = Dueling_DQN_PER_2D(D=D, K=K, batch_sz=batch_sz, hidden_layer_sizes=hidden_layer_sizes, gamma=gamma, lr=2.3e-6, N_CHANEL=N_CHANEL, IM_SIZE=IM_SIZE, scope="DDQN") print("DRL model loaded") init = tf.global_variables_initializer() sess = tf.InteractiveSession() sess.run(init) saver = tf.train.Saver() MODEL_PATH = "../logs/2d/save_models/2d_mean_std" saver.restore(sess, MODEL_PATH) model.set_session(sess) return model
D = IM_SIZE * N_CHANEL hidden_layer_sizes = [128, 64, 32] gamma = 0.5 starting_pixel_loc_list = [[20, 340], [320, 15]] # number of random test batch_sz = 32 count = 0 #tf.reset_default_graph() model = Dueling_DQN_PER_2D(D=D, K=K, batch_sz=batch_sz, hidden_layer_sizes=hidden_layer_sizes, gamma=gamma, lr=2.3e-6, N_CHANEL=N_CHANEL, IM_SIZE=IM_SIZE, scope="DDQN") init = tf.global_variables_initializer() sess = tf.InteractiveSession() sess.run(init) saver = tf.train.Saver() MODEL_PATH = "../logs/2d/save_models/2d_mean_std" saver.restore(sess, MODEL_PATH) model.set_session(sess)