Example #1
0
 def __init__(self,
              dir_st,
              vocab,
              save=False,
              dropout=0.25,
              fixed_emb=False):
     super(DropUniSkip, self).__init__(dir_st, vocab, save, dropout,
                                       fixed_emb)
     # Modules
     self.seq_drop_x = SequentialDropout(p=self.dropout)
     self.seq_drop_h = SequentialDropout(p=self.dropout)
Example #2
0
 def set_dropout(self, dropout):
     self.dropout = dropout
     self.drop_ir = SequentialDropout(p=dropout)
     self.drop_ii = SequentialDropout(p=dropout)
     self.drop_in = SequentialDropout(p=dropout)
     self.drop_hr = SequentialDropout(p=dropout)
     self.drop_hi = SequentialDropout(p=dropout)
     self.drop_hn = SequentialDropout(p=dropout)
Example #3
0
class BayesianGRUCell(AbstractGRUCell):
    def __init__(self,
                 input_size,
                 hidden_size,
                 bias_ih=True,
                 bias_hh=False,
                 dropout=0.25):
        super(BayesianGRUCell, self).__init__(input_size, hidden_size, bias_ih,
                                              bias_hh)
        self.set_dropout(dropout)

    def set_dropout(self, dropout):
        self.dropout = dropout
        self.drop_ir = SequentialDropout(p=dropout)
        self.drop_ii = SequentialDropout(p=dropout)
        self.drop_in = SequentialDropout(p=dropout)
        self.drop_hr = SequentialDropout(p=dropout)
        self.drop_hi = SequentialDropout(p=dropout)
        self.drop_hn = SequentialDropout(p=dropout)

    def end_of_sequence(self):
        self.drop_ir.end_of_sequence()
        self.drop_ii.end_of_sequence()
        self.drop_in.end_of_sequence()
        self.drop_hr.end_of_sequence()
        self.drop_hi.end_of_sequence()
        self.drop_hn.end_of_sequence()

    def forward(self, x, hx=None):
        if hx is None:
            hx = Variable(x.data.new().resize_(
                (x.size(0), self.hidden_size)).fill_(0))
        x_ir = self.drop_ir(x)
        x_ii = self.drop_ii(x)
        x_in = self.drop_in(x)
        x_hr = self.drop_hr(hx)
        x_hi = self.drop_hi(hx)
        x_hn = self.drop_hn(hx)
        r = F.sigmoid(self.weight_ir(x_ir) + self.weight_hr(x_hr))
        i = F.sigmoid(self.weight_ii(x_ii) + self.weight_hi(x_hi))
        n = F.tanh(self.weight_in(x_in) + r * self.weight_hn(x_hn))
        hx = (1 - i) * n + i * hx
        return hx