def CreateSolution(device, region, name): """ Creates solution variables As well as their entries on each edge """ node_solution(name=name, device=device, region=region) edge_from_node_model(node_model=name, device=device, region=region)
def create_solution(self, region, name): ''' Creates solution variables As well as their entries on each edge ''' node_solution(name=name, device=self.name, region=region) edge_from_node_model(node_model=name, device=self.name, region=region)
def setup_poisson(device, region, variable_update='log_damp', **kwargs): """ Sets up poisson equation solution Requires: setup physical constants and setup poisson parameters :param kwargs: :return: """ logger.debug("Setting up Poisson Equation") # These are variables that are to be solved during the simulation # for sol_variable in [hole_density, electron_density, potential, qfn, qfp]: for sol_variable in [potential, electron_density, hole_density]: create_solution(device, region, sol_variable) total_charge_eq = f'kahan3({hole_density},-{electron_density},{p_doping})' #f'{hole_density}-{electron_density}+{p_doping}-{n_doping}' #f'-{q}*kahan4({hole_density}, -{electron_density}, {p_doping}, -{n_doping})' int_chg_eq = '1e11'# f'({Nc}*{Nv})^(1/2)*exp(-{bandgap}/(2*k*T))' # Order matters! for name, eq in zip([intrinsic_charge, total_charge, ], [int_chg_eq, total_charge_eq,]): create_node_and_derivatives(device, region, name, eq, [potential, electron_density, hole_density]) ds.edge_from_node_model(device=device, region=region,node_model=electron_density) ds.edge_from_node_model(device=device, region=region, node_model=hole_density) e_field_eq = f"({potential}@n0-{potential}@n1)*EdgeInverseLength" d_field_eq = f'{e_field}*{permittivity}*{eps_0}' for name, eq in zip([e_field, d_field],[e_field_eq, d_field_eq]): create_edge_and_derivatives(device, region, name, eq, [potential]) # Lastly, setup the equation to solve for 'potential' # TODO check initial values ds.set_node_values(device=device, region=region, name=electron_density, init_from=intrinsic_charge) ds.set_node_values(device=device, region=region, name=hole_density, init_from=intrinsic_charge) ds.equation(device=device, region=region, name='PoissonEq', variable_name=potential, node_model=total_charge, edge_model=d_field, variable_update=variable_update)
def create_solution_variable(self, name): """ Creates solution variables As well as their entries on each edge """ for region in self.mesh.regions: node_solution(name=name, device=self.name, region=region) edge_from_node_model(node_model=name, device=self.name, region=region)
def EnsureEdgeFromNodeModelExists(device, region, nodemodel): """ Checks if the edge models exists """ if not InNodeModelList(device, region, nodemodel): raise ("{} must exist" % (nodemodel)) # emlist = get_edge_model_list(device=device, region=region) emtest = ("{0}@n0".format(nodemodel) and "{0}@n1".format(nodemodel)) if not emtest: log.debug("INFO: Creating ${0}@n0 and ${0}@n1".format(nodemodel)) edge_from_node_model(device=device, region=region, node_model=nodemodel)
def ensure_edge_from_node_model_exists(device, region, nodemodel): """ Checks if the edge models exists """ if nodemodel not in get_node_model_list(device=device, region=region): raise ValueError(f"{nodemodel} must exist") # emlist = get_edge_model_list(device=device, region=region) emtest = ("{0}@n0".format(nodemodel) and "{0}@n1".format(nodemodel)) if not emtest: logger.debug("INFO: Creating ${0}@n0 and ${0}@n1".format(nodemodel)) edge_from_node_model(device=device, region=region, node_model=nodemodel)
def create_solution(device=None, regions=None, name=None): """ Creates a variable to be solved during the simulation Also creates the edge models for the node solution so you have access on edges and nodes :param device: :param region: :param name: :return: """ if device is None: device = ds.get_device_list()[0] if regions is None: regions = ds.get_region_list(device=device) if type(regions) is str: regions = [regions] try: regions[0] except IndexError: regions = [regions] for region in regions: ds.node_solution(name=name, device=device, region=region) ds.edge_from_node_model(node_model=name, device=device, region=region)
def create_solution(device, region, name): ds.node_solution(name=name, device=device, region=region) ds.edge_from_node_model(node_model=name, device=device, region=region)
def set_dd_parameters(device, region, permittivity=11.1, n_i=1E10, T=300, mu_n=400, mu_p=200, taun=1E-5, taup=1E-5): names = [ 'permittivity', 'q', 'n_i', 'T', 'k', 'kT', 'V_t', 'mobility_n', 'mobility_p', 'n1', 'p1', 'taun', 'taup' ] values = [ permittivity * eps_0, q, n_i, T, k, k * T, k * T / q, mu_n, mu_p, n_i, n_i, taun, taup ] for name, value in zip(names, values): ds.set_parameter(device=device, region=region, name=name, value=value) # Setup the solutions for the potential, electron and hole densities pot = 'potential' electron_density = 'electron_density' hole_density = 'hole_density' for var in [pot, electron_density, hole_density]: create_solution(device=device, region=region, name=var) # Now for some poisson's equation # Create some nodemodels n_ie = 'n_ie', f"n_i*exp(q*{pot}/k*T)" # Intrinsic electron density n_ih = 'n_ih', f'n_i^2/{n_ie[0]}' # Intrinsic hole density net_n_i = 'net_n_i', f'kahan4(-{n_ie[0]}, {n_ih[0]}, p_doping, -n_doping)' # Net intrinsic charge net_n_i_charge = 'net_n_i_charge', f'q*{net_n_i[0]}' #PotentialIntrinsicCharge for name, eq in [n_ie, n_ih, net_n_i, net_n_i_charge]: ds.node_model(device=device, region=region, name=name, equation=eq) create_derivatives(device, region, name, eq, pot) E_field = 'E_field', f'({pot}@n0-{pot}@n1)*EdgeInverseLength' D_field = 'D_field', 'E_field * permittivity' #PotentialEdgeFlux ?? wtf # Initialize the electron and hole densities for carrier, init in zip([electron_density, hole_density], [n_ie, n_ih]): ds.set_node_values(device=device, region=region, name=carrier, init_from=init[0]) # setup edge nodes for edge_name, eq in [E_field, D_field]: ds.edge_model(device=device, region=region, name=edge_name, equation=eq) create_derivatives(device, region, edge_name, eq, pot) # Create PE poisson_RHS = 'PoissonRHS', f'({hole_density} - {electron_density} + p_doping - n_doping)' #*q/(permittivity)' # AKA pne ds.node_model(device=device, region=region, name=poisson_RHS[0], equation=poisson_RHS[1]) create_derivatives(device, region, poisson_RHS[0], poisson_RHS[1], hole_density, electron_density) ds.equation(device=device, region=region, name="PoissonEquation", variable_name=pot, node_model=poisson_RHS[0], edge_model=D_field[0]) # Use stupid bernouli formalism # Check if exists? ds.edge_from_node_model(device=device, region=region, node_model=pot) beta_vdiff = 'beta_vdiff', f'({pot}@n0 - {pot}@n1)*q/kT' ds.edge_model(device=device, region=region, name=beta_vdiff[0], equation=beta_vdiff[1]) bernouli = 'bern', f'B({beta_vdiff[0]})' ds.edge_model(device=device, region=region, name=bernouli[0], equation=bernouli[1]) # Create continuity equations E_qf_n = ( 'quasi_fermi_n', f'q*({pot}-electron_affinity) + k*T*log({electron_density}/N_cond)') E_qf_p = ( 'quasi_fermi_p', f'q*({pot}-electron_affinity) - k*T*log({hole_density}/N_val) - band_gap' ) J_e = 'e_current', f'q*mobility_n*{electron_density}*EdgeInverseLength*({E_qf_n[0]}@n0-{E_qf_n[0]}@n1)' J_h = 'h_current', f'q*mobility_p*{hole_density}*EdgeInverseLength*({E_qf_p[0]}@n0-{E_qf_p[0]}@n1)' for J in [E_qf_n, E_qf_p, J_e, J_h]: ds.edge_model(device=device, region=region, name=J[0], equation=J[1]) ds.node_model(device=device, region=region, name=J[0], equation=J[1]) for node_model in [pot, electron_density, hole_density]: # Check if exists?! ds.edge_from_node_model(device=device, region=region, node_model=node_model) create_derivatives(device, region, J[0], J[1], node_model) for node_model in [n_ie, n_ih, net_n_i, net_n_i_charge]: ds.print_node_values(device=device, region=region, name=node_model[0]) for edge_model in [E_qf_n, E_qf_p, J_e, J_h]: ds.print_edge_values(device=device, region=region, name=edge_model[0])
set_parameter(device=device, region=region, name="taup", value=1e-8) # SetNetDoping(device=device, region=region) CreateNodeModel(device, region, "Acceptors", "1.0e18*step(0.5e-5-x)") CreateNodeModel(device, region, "Donors", "1.0e18*step(x-0.5e-5)") CreateNodeModel(device, region, "NetDoping", "Donors-Acceptors") print_node_values(device=device, region=region, name="NetDoping") # InitialSolution(device, region) circuit_contacts = None # Create Potential, Potential@n0, Potential@n1 # CreateSolution(device, region, "Potential") name = "Potential" node_solution(name=name, device=device, region=region) edge_from_node_model(node_model=name, device=device, region=region) # Create potential only physical models CreateSiliconPotentialOnly(device, region) # Set up the contacts applying a bias for i in get_contact_list(device=device): if circuit_contacts and i in circuit_contacts: CreateSiliconPotentialOnlyContact(device, region, i, True) else: ###print "FIX THIS" ### it is more correct for the bias to be 0, and it looks like there is side effects set_parameter(device=device, name=GetContactBiasName(i), value=0.0) CreateSiliconPotentialOnlyContact(device, region, i) get_ds_status()
def setup_drift_diffusion(self, dielectric_const=11.9, intrinsic_carriers=1E10, work_function=4.05, band_gap=1.124, Ncond=3E19, Nval=3E19, mobility_n=1107, mobility_p=424.6, Nacceptors=0, Ndonors=0): """ Sets up equations for a drift-diffusion style of dc current transport. kwargs here are device-level parameters, imbuing all regions with these properties If a specific region or material is to have a different set of parameters, they can be set through the Region constructor. :param dielectric_const: :param intrinsic_carriers: :param work_function: :param band_gap: :param Ncond: :param Nval: :param mobility_n: :param mobility_p: :param Nacceptors: :param Ndonors: :return: """ # Begin legacy copy-paste job # Set silicon parameters device = self.name region = self.regions[0].name eps_si = dielectric_const n_i = 1E10 k = kb mu_n = mobility_n mu_p = mobility_p set_parameter(device=device, region=region, name="Permittivity", value=eps_si * eps_0) set_parameter(device=device, region=region, name="ElectronCharge", value=q) set_parameter(device=device, region=region, name="n_i", value=n_i) set_parameter(device=device, region=region, name="T", value=T) set_parameter(device=device, region=region, name="kT", value=k * T) set_parameter(device=device, region=region, name="V_t", value=k * T / q) set_parameter(device=device, region=region, name="mu_n", value=mu_n) set_parameter(device=device, region=region, name="mu_p", value=mu_p) # default SRH parameters set_parameter(device=device, region=region, name="n1", value=n_i) set_parameter(device=device, region=region, name="p1", value=n_i) set_parameter(device=device, region=region, name="taun", value=1e-5) set_parameter(device=device, region=region, name="taup", value=1e-5) # CreateNodeModel 3 times for name, value in [('Acceptors', "1.0e18*step(0.5e-5-x)"), ('Donors', "1.0e18*step(x-0.5e-5)"), ('NetDoping', "Donors-Acceptors")]: result = node_model(device=device, region=region, name=name, equation=value) logger.debug(f"NODEMODEL {device} {region} {name} '{result}'") print_node_values(device=device, region=region, name="NetDoping") model_name = "Potential" node_solution(name=model_name, device=device, region=region) edge_from_node_model(node_model=model_name, device=device, region=region) # Create silicon potentialOnly if model_name not in get_node_model_list(device=device, region=region): logger.debug("Creating Node Solution Potential") node_solution(device=device, region=region, name=model_name) edge_from_node_model(node_model=model_name, device=device, region=region) # require NetDoping for name, eq in ( ("IntrinsicElectrons", "n_i*exp(Potential/V_t)"), ("IntrinsicHoles", "n_i^2/IntrinsicElectrons"), ("IntrinsicCharge", "kahan3(IntrinsicHoles, -IntrinsicElectrons, NetDoping)"), ("PotentialIntrinsicCharge", "-ElectronCharge * IntrinsicCharge")): node_model(device=device, region=region, name=name, equation=eq) node_model(device=device, region=region, name=f"{name}:{model_name}", equation=f"simplify(diff({eq},{model_name}))") # CreateNodeModelDerivative(device, region, name, eq, model_name) ### TODO: Edge Average Model for name, eq in (("ElectricField", "(Potential@n0-Potential@n1)*EdgeInverseLength"), ("PotentialEdgeFlux", "Permittivity * ElectricField")): edge_model(device=device, region=region, name=name, equation=eq) edge_model(device=device, region=region, name=f"{name}:{model_name}@n0", equation=f"simplify(diff({eq}, {model_name}@n0))") edge_model(device=device, region=region, name=f"{name}:{model_name}@n1", equation=f"simplify(diff({eq}, {model_name}@n1))") equation(device=device, region=region, name="PotentialEquation", variable_name=model_name, node_model="PotentialIntrinsicCharge", edge_model="PotentialEdgeFlux", variable_update="log_damp") # Set up the contacts applying a bias is_circuit = False for contact_name in get_contact_list(device=device): set_parameter(device=device, name=f"{contact_name}_bias", value=0.0) # CreateSiliconPotentialOnlyContact(device, region, contact_name) # Start # Means of determining contact charge # Same for all contacts if not InNodeModelList(device, region, "contactcharge_node"): create_node_model(device, region, "contactcharge_node", "ElectronCharge*IntrinsicCharge") #### TODO: This is the same as D-Field if not InEdgeModelList(device, region, "contactcharge_edge"): CreateEdgeModel(device, region, "contactcharge_edge", "Permittivity*ElectricField") create_edge_model_derivatives(device, region, "contactcharge_edge", "Permittivity*ElectricField", "Potential") # set_parameter(device=device, region=region, name=GetContactBiasName(contact), value=0.0) contact_bias_name = f"{contact_name}_bias" contact_model_name = f"{contact_name}nodemodel" contact_model = f"Potential -{contact_bias_name} + ifelse(NetDoping > 0, -V_t*log({CELEC_MODEL!s}/n_i), V_t*log({CHOLE_MODEL!s}/n_i))"\ CreateContactNodeModel(device, contact_name, contact_model_name, contact_model) # Simplify it too complicated CreateContactNodeModel( device, contact_name, "{0}:{1}".format(contact_model_name, "Potential"), "1") if is_circuit: CreateContactNodeModel( device, contact_name, "{0}:{1}".format(contact_model_name, contact_bias_name), "-1") if is_circuit: contact_equation(device=device, contact=contact_name, name="PotentialEquation", variable_name="Potential", node_model=contact_model_name, edge_model="", node_charge_model="contactcharge_node", edge_charge_model="contactcharge_edge", node_current_model="", edge_current_model="", circuit_node=contact_bias_name) else: contact_equation(device=device, contact=contact_name, name="PotentialEquation", variable_name="Potential", node_model=contact_model_name, edge_model="", node_charge_model="contactcharge_node", edge_charge_model="contactcharge_edge", node_current_model="", edge_current_model="") # Biggie # Initial DC solution solve(type="dc", absolute_error=1.0, relative_error=1e-10, maximum_iterations=30) drift_diffusion_initial_solution(device, region) solve(type="dc", absolute_error=1e10, relative_error=1e-10, maximum_iterations=30)
def create_solution(device, region, name): """ Creates both node and edge solutions. """ ds.node_solution(name=name, device=device, region=region) ds.edge_from_node_model(node_model=name, device=device, region=region)