Example #1
0
    def _load_coco_annotation(self, index):
        """
    Loads COCO bounding-box instance annotations. Crowd instances are
    handled by marking their overlaps (with all categories) to -1. This
    overlap value means that crowd "instances" are excluded from training.
    """
        im_ann = self._COCO.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
        objs = self._COCO.loadAnns(annIds)
        # Sanitize bboxes -- some are invalid
        valid_objs = []
        for obj in objs:
            x1 = np.max((0, obj['bbox'][0]))
            y1 = np.max((0, obj['bbox'][1]))
            x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
            y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)
        objs = valid_objs
        num_objs = len(objs)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        seg_areas = np.zeros((num_objs), dtype=np.float32)

        # Lookup table to map from COCO category ids to our internal class
        # indices
        coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                          self._class_to_ind[cls])
                                         for cls in self._classes[1:]])

        for ix, obj in enumerate(objs):
            cls = coco_cat_id_to_class_ind[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            seg_areas[ix] = obj['area']
            if obj['iscrowd']:
                # Set overlap to -1 for all classes for crowd objects
                # so they will be excluded during training
                overlaps[ix, :] = -1.0
            else:
                overlaps[ix, cls] = 1.0

        ds_utils.validate_boxes(boxes, width=width, height=height)
        overlaps = scipy.sparse.csr_matrix(overlaps)
        return {
            'width': width,
            'height': height,
            'boxes': boxes,
            'gt_classes': gt_classes,
            'gt_overlaps': overlaps,
            'flipped': False,
            'seg_areas': seg_areas
        }
Example #2
0
    def _load_coco_annotation(self, index):
        """
        Loads COCO bounding-box instance annotations. Crowd instances are
        handled by marking their overlaps (with all categories) to -1. This
        overlap value means that crowd "instances" are excluded from training.
        """
        im_ann = self._COCO.loadImgs(index)[0]
        width = im_ann['width']
        height = im_ann['height']

        annIds = self._COCO.getAnnIds(imgIds=index, iscrowd=None)
        objs = self._COCO.loadAnns(annIds)
        # Sanitize bboxes -- some are invalid
        valid_objs = []
        for obj in objs:
            x1 = np.max((0, obj['bbox'][0]))
            y1 = np.max((0, obj['bbox'][1]))
            x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1))))
            y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1))))
            if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
                obj['clean_bbox'] = [x1, y1, x2, y2]
                valid_objs.append(obj)
        objs = valid_objs
        num_objs = len(objs)

        boxes = np.zeros((num_objs, 4), dtype=np.uint16)
        gt_classes = np.zeros((num_objs), dtype=np.int32)
        overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32)
        seg_areas = np.zeros((num_objs), dtype=np.float32)

        # Lookup table to map from COCO category ids to our internal class
        # indices
        coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls],
                                          self._class_to_ind[cls])
                                         for cls in self._classes[1:]])

        for ix, obj in enumerate(objs):
            cls = coco_cat_id_to_class_ind[obj['category_id']]
            boxes[ix, :] = obj['clean_bbox']
            gt_classes[ix] = cls
            seg_areas[ix] = obj['area']
            if obj['iscrowd']:
                # Set overlap to -1 for all classes for crowd objects
                # so they will be excluded during training
                overlaps[ix, :] = -1.0
            else:
                overlaps[ix, cls] = 1.0

        ds_utils.validate_boxes(boxes, width=width, height=height)
        overlaps = scipy.sparse.csr_matrix(overlaps)
        return {'boxes' : boxes,
                'gt_classes': gt_classes,
                'gt_overlaps' : overlaps,
                'flipped' : False,
                'seg_areas' : seg_areas}
Example #3
0
    def _load_proposals(self, method, gt_roidb):
        """
        Load pre-computed proposals in the format provided by Jan Hosang:
        http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-
          computing/research/object-recognition-and-scene-understanding/how-
          good-are-detection-proposals-really/
        For MCG, use boxes from http://www.eecs.berkeley.edu/Research/Projects/
          CS/vision/grouping/mcg/ and convert the file layout using
        lib/datasets/tools/mcg_munge.py.
        """
        box_list = []
        top_k = self.config['top_k']
        valid_methods = [
            'MCG',
            'selective_search',
            'edge_boxes_AR',
            'edge_boxes_70']
        assert method in valid_methods

        print('Loading {} boxes'.format(method))
        for i, index in enumerate(self._image_index):
            if i % 1000 == 0:
                print('{:d} / {:d}'.format(i + 1, len(self._image_index)))

            box_file = osp.join(
                cfg.DATA_DIR, 'coco_proposals', method, 'mat',
                self._get_box_file(index))

            raw_data = sio.loadmat(box_file)['boxes']
            boxes = np.maximum(raw_data - 1, 0).astype(np.uint16)
            if method == 'MCG':
                # Boxes from the MCG website are in (y1, x1, y2, x2) order
                boxes = boxes[:, (1, 0, 3, 2)]
            # Remove duplicate boxes and very small boxes and then take top k
            keep = ds_utils.unique_boxes(boxes)
            boxes = boxes[keep, :]
            keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
            boxes = boxes[keep, :]
            boxes = boxes[:top_k, :]
            box_list.append(boxes)
            # Sanity check
            im_ann = self._COCO.loadImgs(index)[0]
            width = im_ann['width']
            height = im_ann['height']
            ds_utils.validate_boxes(boxes, width=width, height=height)
        return self.create_roidb_from_box_list(box_list, gt_roidb)
Example #4
0
    def _load_proposals(self, method, gt_roidb):
        """
        Load pre-computed proposals in the format provided by Jan Hosang:
        http://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-
          computing/research/object-recognition-and-scene-understanding/how-
          good-are-detection-proposals-really/
        For MCG, use boxes from http://www.eecs.berkeley.edu/Research/Projects/
          CS/vision/grouping/mcg/ and convert the file layout using
        lib/datasets/tools/mcg_munge.py.
        """
        box_list = []
        top_k = self.config['top_k']
        valid_methods = [
            'MCG',
            'selective_search',
            'edge_boxes_AR',
            'edge_boxes_70']
        assert method in valid_methods

        print 'Loading {} boxes'.format(method)
        for i, index in enumerate(self._image_index):
            if i % 1000 == 0:
                print '{:d} / {:d}'.format(i + 1, len(self._image_index))

            box_file = osp.join(
                cfg.DATA_DIR, 'coco_proposals', method, 'mat',
                self._get_box_file(index))

            raw_data = sio.loadmat(box_file)['boxes']
            boxes = np.maximum(raw_data - 1, 0).astype(np.uint16)
            if method == 'MCG':
                # Boxes from the MCG website are in (y1, x1, y2, x2) order
                boxes = boxes[:, (1, 0, 3, 2)]
            # Remove duplicate boxes and very small boxes and then take top k
            keep = ds_utils.unique_boxes(boxes)
            boxes = boxes[keep, :]
            keep = ds_utils.filter_small_boxes(boxes, self.config['min_size'])
            boxes = boxes[keep, :]
            boxes = boxes[:top_k, :]
            box_list.append(boxes)
            # Sanity check
            im_ann = self._COCO.loadImgs(index)[0]
            width = im_ann['width']
            height = im_ann['height']
            ds_utils.validate_boxes(boxes, width=width, height=height)
        return self.create_roidb_from_box_list(box_list, gt_roidb)