def classify(self, example): predictions = [tree.classify(example) for tree in self.trees] counts = defaultdict(int) for p in predictions: counts[p] += 1 cls, count = dt_util.get_plurality(counts) return cls
def evaluate_chi_square(self, chi_square, unsplit_counts): if chi_square <= CONFIDENCE_BOUND: return self print "++ Pruned" best_class, best_val = dt_util.get_plurality(unsplit_counts) return decision_tree_leaf(best_class, unsplit_counts)