Example #1
0
    def _leg2d(self, time, marker_pos, normalized_force_plate_values,
               cutoff, sample_rate):
        """This method effectively does the same thing that the Octave
        routine does."""

        # differentiate to get the marker velocities and accelerations
        marker_vel = process.derivative(time, marker_pos,
                                        method='combination')
        marker_acc = process.derivative(time, marker_vel,
                                        method='combination')

        # filter all the input data with the same filter
        marker_pos = process.butterworth(marker_pos, cutoff, sample_rate,
                                         axis=0)
        marker_vel = process.butterworth(marker_vel, cutoff, sample_rate,
                                         axis=0)
        marker_acc = process.butterworth(marker_acc, cutoff, sample_rate,
                                         axis=0)
        force_array = process.butterworth(normalized_force_plate_values,
                                          cutoff, sample_rate, axis=0)

        # compute the inverse dynamics
        inv_dyn = lower_extremity_2d_inverse_dynamics
        dynamics = inv_dyn(time, marker_pos, marker_vel, marker_acc,
                           force_array)

        return dynamics
Example #2
0
    def time_derivative(self, col_names, new_col_names=None):
        """Numerically differentiates the specified columns with respect to
        the time index and adds the new columns to `self.data`.

        Parameters
        ==========
        col_names : list of strings
            The column names for the time series which should be numerically
            time differentiated.
        new_col_names : list of strings, optional
            The desired new column name(s) for the time differentiated
            series. If None, then a default name of `Time derivative of
            <origin column name>` will be used.

        """

        if new_col_names is None:
            new_col_names = ['Time derivative of {}'.format(c) for c in
                             col_names]

        for col_name, new_col_name in zip(col_names, new_col_names):
            self.data[new_col_name] = \
                process.derivative(self.data.index.values.astype(float),
                                   self.data[col_name].values,
                                   method='combination')
Example #3
0
def find_constant_speed(time, speed, plot=False, filter_cutoff=1.0):
    """Returns the indice at which the treadmill speed becomes constant and
    the time series when the treadmill speed is constant.

    Parameters
    ==========
    time : array_like, shape(n,)
        A monotonically increasing array.
    speed : array_like, shape(n,)
        A speed array, one sample for each time. Should ramp up and then
        stablize at a speed.
    plot : boolean, optional
        If true a plot will be displayed with the results.
    filter_cutoff : float, optional
        The filter cutoff frequency for filtering the speed in Hertz.

    Returns
    =======
    indice : integer
        The indice at which the speed is consider constant thereafter.
    new_time : ndarray, shape(n-indice,)
        The new time array for the constant speed section.

    """

    sample_rate = 1.0 / (time[1] - time[0])

    filtered_speed = process.butterworth(speed, filter_cutoff, sample_rate)

    acceleration = process.derivative(time,
                                      filtered_speed,
                                      method='central',
                                      padding='second order')
    last = acceleration[int(0.2 * len(acceleration)):]
    noise_level = np.max(np.abs(last - np.mean(last)))

    reversed_acceleration = acceleration[::-1]

    indice = np.argmax(reversed_acceleration > noise_level)

    additional_samples = sample_rate * 0.65

    new_indice = indice - int(round(additional_samples))

    if plot is True:
        fig, ax = plt.subplots(2, 1)
        ax[0].plot(time, speed, '.', time, filtered_speed, 'g-')
        ax[0].plot(
            np.ones(2) * (time[len(time) - new_indice]),
            np.hstack((np.max(speed), np.min(speed))))
        ax[1].plot(time, acceleration, '.')
        fig.show()

    return len(time) - (new_indice), time[len(time) - new_indice]
Example #4
0
def find_constant_speed(time, speed, plot=False, filter_cutoff=1.0):
    """Returns the indice at which the treadmill speed becomes constant and
    the time series when the treadmill speed is constant.

    Parameters
    ==========
    time : array_like, shape(n,)
        A monotonically increasing array.
    speed : array_like, shape(n,)
        A speed array, one sample for each time. Should ramp up and then
        stablize at a speed.
    plot : boolean, optional
        If true a plot will be displayed with the results.
    filter_cutoff : float, optional
        The filter cutoff frequency for filtering the speed in Hertz.

    Returns
    =======
    indice : integer
        The indice at which the speed is consider constant thereafter.
    new_time : ndarray, shape(n-indice,)
        The new time array for the constant speed section.

    """

    sample_rate = 1.0 / (time[1] - time[0])

    filtered_speed = process.butterworth(speed, filter_cutoff, sample_rate)

    acceleration = process.derivative(time, filtered_speed,
                                      method='central',
                                      padding='second order')
    last = acceleration[int(0.2 * len(acceleration)):]
    noise_level = np.max(np.abs(last - np.mean(last)))

    reversed_acceleration = acceleration[::-1]

    indice = np.argmax(reversed_acceleration > noise_level)

    additional_samples = sample_rate * 0.65

    new_indice = indice - additional_samples

    if plot is True:
        fig, ax = plt.subplots(2, 1)
        ax[0].plot(time, speed, '.', time, filtered_speed, 'g-')
        ax[0].plot(np.ones(2) * (time[len(time) - new_indice]),
                   np.hstack((np.max(speed), np.min(speed))))
        ax[1].plot(time, acceleration, '.')
        fig.show()

    return len(time) - (new_indice), time[len(time) - new_indice]
Example #5
0
    def peak_detection(x):

        dx = process.derivative(time, x, method="combination")
        dx[dx > 0] = 1
        dx[dx < 0] = -1
        ddx = process.derivative(time, dx, method="combination")

        peaks = []
        for i, spike in enumerate(ddx < 0):
            if spike == True:
                peaks.append(i)

        peaks = peaks[::2]

        threshold_value = (max(x) - min(x))*threshold + min(x)

        peak_indices = []
        for i in peaks:
            if x[i] > threshold_value:
                peak_indices.append(i)

        return peak_indices
import simulation
from grf_landmark_settings import settings

# load the data and find a controller
trial_number = '068'
trial = utils.Trial(trial_number)
trial._write_event_data_frame_to_disk('Longitudinal Perturbation')
event_data_frame = trial.event_data_frames['Longitudinal Perturbation']

event_data_frame = simulation.estimate_trunk_somersault_angle(event_data_frame)

# TODO : will likely need to low pass filter the two time derivatives

event_data_frame['Trunk.Somersault.Rate'] = \
    process.derivative(event_data_frame.index.values.astype(float),
                       event_data_frame['Trunk.Somersault.Angle'],
                       method='combination')
event_data_frame['RGTRO.VelY'] = \
    process.derivative(event_data_frame.index.values.astype(float),
                       event_data_frame['RGTRO.PosY'], method='combination')

# TODO : Ensure that the modified data frame is infact the one in the Trial
# object.
trial._write_inverse_dynamics_to_disk('Longitudinal Perturbation', force=True)
trial._section_into_gait_cycles('Longitudinal Perturbation', force=True)

gait_data = trial.gait_data_objs['Longitudinal Perturbation']

sensor_labels, control_labels, result, solver = \
    trial.identification_results('Longitudinal Perturbation', 'joint isolated')