Example #1
0
 def __init__(self, dg_model, gtruth_tf, dname=None):
     #dname should be d8, d1, d8_full, or d3 right now
     self.dname = dname
     self.dg_model = dg_model
     self.gtruth_tf = gtruth_tf 
     self.region_to_topology = get_region_to_topo_hash_containment(self.gtruth_tf, self.dg_model)
     self.extractor = dir_util.direction_parser_sdc()
    def __init__(self, m4du, rndf_file):
        self.lc = lcm.LCM()

        #load the model
        print "Loading model..."
        self.dg_model = cPickle.load(open(m4du, 'r'))
        self.rndf = ru.rndf(rndf_file, True)
        self.sdc_parser = direction_parser_sdc()

        self.trans_xyz = (0, 0, 0)
        self.trans_latlon = self.rndf.origin
        self.trans_theta = 0

        self.run_inference = True
        self.waypoints = []
        self.cmd = None

        self.curr_location = None
        self.curr_orientation = None

        # Change these two for testing; to be replaced by LCM message
        #self.curr_location = (0, 0, 0)
        #self.cmd = str("Go to the truck")

        self.lc.subscribe("DIRECTION_INPUT", self.on_comment_msg)
        self.lc.subscribe("POSE", self.on_pose_msg)
        self.lc.subscribe("GPS_TO_LOCAL", self.on_transform_msg)
    def __init__(self, m4du, region_tagfile, map_filename):
        self.lc = lcm.LCM()

        #load the model
        print "Loading model..."
        self.dg_model = m4du
        self.sdc_parser = direction_parser_sdc()

        #    for k1 in dg_model.tmap.keys():
        #        print "===="
        #        for k2 in dg_model.tmap[k1]:
        #            print k2
        #            print dg_model.tmap_locs[k1]
        #            print dg_model.tmap_locs[k2]

        #get the topo_to_region_hash
        self.dataset_name = region_tagfile.split("/")[-1].split("_")[0]
        tf_region = tag_file(region_tagfile, map_filename)
        self.topo_to_region = get_topo_to_region_hash(tf_region, self.dg_model)

        self.waypoints = []
        self.cur_pose = None

        self.lc.subscribe("SPEECH_COMMANDS", self.on_speech_msg)
        self.lc.subscribe("POSE", self.on_pose_msg)

        self.cmd = None
Example #4
0
 def toggleSdcExtractor(self, state):
     if state == Qt.Checked:
         self.extractor = dir_util.direction_parser_wizard_of_oz(
             self.corpus_fname, "stefie10")
     elif state == Qt.Unchecked:
         self.extractor = dir_util.direction_parser_sdc()
     elif state == Qt.PartiallyChecked:
         pass
     else:
         raise ValueError("Unepxected state: " + ` state `)
Example #5
0
def run_everything(model_filename):
    global curr_goal, curr_location, dg_model, sdc_parser, is_goal

    dg_model = cPickle.load(open(model_filename, 'r'))
    sdc_parser = direction_parser_sdc()

    is_goal = Value('i', 0)
    curr_goal = Array('d', [sys.maxint, sys.maxint])
    curr_location = Array('d', [sys.maxint, sys.maxint, sys.maxint])
    p2 = Process(target=navigator_run,
                 args=(is_goal, curr_goal, curr_location))

    print "started the gui"
    p2.start()
    #p2.join()
    create_gui()
Example #6
0
def generate(out_fn, model_fn, num_to_generate=50, sent_number=0):
    #    generate questions and print them and their properties

    #parsing the arguments
    if num_to_generate in [None, ""]:
        num_to_generate = 50
    else:
        num_to_generate = int(num_to_generate)

    if sent_number in [None, ""]:
        sent_number = 0
    else:
        sent_number = int(sent_number)

    #load the model and the result
    m4du = cPickle.load(open(model_fn, 'r'))
    m4du = topN.model(m4du)
    save_data = cPickle.load(open(out_fn, 'r'))

    sdc_parser = direction_parser_sdc()
    print "num_sentences =", len(save_data["sentences"])

    #use the first inference for testing purposes
    sentence = save_data["sentences"][sent_number]
    tn_paths = save_data["paths_topN"][sent_number]
    tn_probs = save_data["probability_topN"][sent_number]
    topN_paths = [(tn_paths[i], tn_probs[i]) for i in range(len(tn_paths))]

    sdcs = sdc_parser.extract_SDCs(sentence)
    sdcs = m4du.m4du.get_usable_sdc(sdcs)

    all_qns = question_sdc_landmark.question_seq_sdc_landmark(
        sdcs, m4du, topN_paths)

    for i in range(num_to_generate):
        q = all_qns.next_question()
        print q.qn_text
        print q.ans_to_actions
Example #7
0
def dialog(out_fn,
           model_fn,
           gtruth_tag_fn,
           output_dir,
           num_to_generate=50,
           num_to_ask=2,
           sent_number=0,
           objective="deltaH"):

    #    from environ_vars import TKLIB_HOME
    #    map_fn=TKLIB_HOME+"/data/directions/direction_floor_8_full/direction_floor_8_full_filled.cmf.gz"
    #assuming the topN inference is run beforehand

    #parsing the arguments
    if num_to_generate in [None, ""]:
        num_to_generate = 50
    else:
        num_to_generate = int(num_to_generate)

    if num_to_ask in [None, ""]:
        num_to_ask = 2
    else:
        num_to_ask = int(num_to_ask)

    if sent_number in [None, ""]:
        sent_number = 0
    else:
        sent_number = int(sent_number)

    if objective in [None, ""]:
        objective = "deltaH"

    #load the model and the result
    save_data = cPickle.load(open(out_fn, 'r'))
    N = len(save_data["paths_topN"][0])
    m4du_base = cPickle.load(open(model_fn, 'r'))
    m4du = topN.model(m4du_base, N)
    #function that gives us the orientations for a sentence
    orient = get_orientations_annotated

    mystart, myend = save_data['regions'][sent_number].split('to')
    mystart = mystart.strip()
    print "MY START ", mystart
    #    tf = tag_file(gtruth_tag_fn, map_fn)
    print "starting at region:", save_data["start_regions"][sent_number]
    dataset_name = gtruth_tag_fn.split("/")[-1].split("_")[0]
    orientation = orient(deepcopy(m4du), mystart, dataset_name)[0]
    #    orientation = orient(m4du, mystart, dataset_name)
    print "ORIENTATION: ", orientation

    topohash = save_data["region_to_topology"]
    #    sloc = m4du.m4du.tmap_locs[topohash[mystart][0]]
    sloc = m4du.tmap_locs[topohash[mystart][0]]

    #use the first inference for testing purposes
    orig_path = save_data["orig_path"][sent_number]
    print "Original path\n", orig_path

    sentence = save_data["sentences"][sent_number]
    tn_paths = save_data["paths_topN"][sent_number]
    tn_probs = save_data["probability_topN"][sent_number]
    topN_paths = [(tn_paths[i], tn_probs[i]) for i in range(len(tn_paths))]

    #get_sdcs
    sdc_parser = direction_parser_sdc()
    sdcs = sdc_parser.extract_SDCs(sentence)
    print "SDC before", sdcs
    print type(sdcs)
    print type(sdcs[0]), sdcs[0]
    print str(type(sdcs[0]))
    #    return
    sdcs = m4du.m4du.get_usable_sdc(sdcs)
    print "SDC after", sdcs
    print type(sdcs)
    print type(sdcs[0]), sdcs[0]
    print str(type(sdcs[0]))
    #    return

    #previous questions
    previous_qns = []

    #choose objective
    if objective == "deltaH":
        select_questions = deltaH.question_selector
    elif objective == "random":
        select_questions = random_qn.random_qn
    elif objective == "distance_RM":
        select_questions = distance_reward_matrix.question_selector_destination_distance
    elif objective == "exact_path_RM":
        select_questions = exact_path_reward_matrix.question_selector_exact_path
    elif objective == "same_dest_RM":
        select_questions = same_destination_reward_matrix.question_selector_same_destination

    # Set up the helper functions. This will add variety in the dialog.
    qn_generator = question_sdc_landmark.question_seq_sdc_landmark
    ask_question = allways_truthful.allways_truthful

    dialog_data = dialog_data_structure()
    dialog_data["N"] = N
    dialog_data["objective"] = objective
    dialog_data["sentence_number"] = sent_number
    dialog_data["num_to_ask"] = num_to_ask
    dialog_data["num_to_gen"] = num_to_generate
    dialog_data["initial_save_data"] = save_data
    dialog_data["paths_topN"].append(topN_paths)

    dialog_dump_fn = output_dir + name_for_dialog_data(dialog_data)
    cPickle.dump(dialog_data, open(dialog_dump_fn, 'w'))
    print "Saved at", dialog_dump_fn

    for curr_question_number in range(num_to_ask):
        print "Looping the dialog"  #so that the loop is non-empty
        #run question generation and select a bunch of questions, & evaluate them
        all_qns = qn_generator(sdcs, m4du, topN_paths)
        questions = []
        for qn_i in range(num_to_generate):
            questions.append(all_qns.next_question())
        questions = filter(lambda x: x != None, questions)
        questions = filter(
            lambda x: bool(x.qn_text not in map(lambda x: x.qn_text,
                                                previous_qns)), questions)

        #select questions
        best_question, objective_value = select_questions(questions,
                                                          m4du,
                                                          sdcs,
                                                          topN_paths,
                                                          previous_qns,
                                                          answers=ask_question)
        previous_qns.append(best_question)
        dialog_data["selected_questions"].append(best_question)

        #prompt for answer
        answer, ans_dist = ask_question(best_question, m4du, sdcs, topN_paths,
                                        orig_path)
        dialog_data["received_answers"].append(answer)
        dialog_data["answer_distributions"].append(ans_dist)

        #modify sdc seq
        sdcs = modify_sdc_seq.modify_sdc_seq_wrt_ans(sdcs, best_question,
                                                     answer)

        # rerun inference
        vals, lprob, sdc_eval = m4du.infer_path(sdcs, sloc, orientation)
        topN_paths = [(vals[i], lprob[i]) for i in range(len(vals))]
        dialog_data["paths_topN"].append(topN_paths)

        #dump intermediate data into a pickle file
        # this is a good time to save data.
        cPickle.dump(dialog_data, open(dialog_dump_fn, 'w'))
        print "Saved at", dialog_dump_fn

    return dialog_dump_fn
Example #8
0
def plot_performance_with_num_spatial_relations(model, results):
    threshold = 10
    correct = correct_at_threshold(results, threshold)

    sdc_parser = direction_parser_sdc()
    #sdc_parser = direction_parser_wizard_of_oz(results['corpus_fname'], 'stefie10')

    subject_to_sr = {}

    subject_to_num_correct = {}

    total_sdcs = 0.0
    total_sr_sdcs = 0.0
    total_landmark_sdcs = 0.0

    total_sentences = 0.0
    total_raw_sdcs = 0.0
    total_raw_sr_sdcs = 0.0
    total_raw_landmark_sdcs = 0.0

    for i, paths in enumerate(results['path']):
        sentence = results["sentences"][i]
        total_sentences += 1
        subject = results["subjects"][i]

        sdcs = sdc_parser.extract_SDCs(sentence)
        for sdc in sdcs:
            total_raw_sdcs += 1
            if not sdc["spatialRelation"].isNull():
                total_raw_sr_sdcs += 1
            if not sdc["landmark"].isNull():
                total_raw_landmark_sdcs += 1

        usable_sdcs = model.get_usable_sdc(sdcs)

        sr_count = 0.0
        for sdc in usable_sdcs:
            total_sdcs += 1
            print "sr", sdc["sr"]
            #if sdc["sr"] != None and sdc["sr"] in ["to", "past", "through"]:
            if sdc["sr"] != None:
                total_sr_sdcs += 1
                sr_count += 1
            if sdc["landmark"] != None:
                total_landmark_sdcs += 1

        key = str(i)
        #key = subject
        subject_to_sr.setdefault(key, [])
        subject_to_sr[key].append(sr_count / len(usable_sdcs))

        subject_to_num_correct.setdefault(key, 0)
        subject_to_num_correct[key] += correct[i]

    X = []
    Y = []
    label_map = {}
    for subject in subject_to_sr.keys():
        x = na.mean(subject_to_sr[subject])
        y = subject_to_num_correct[subject]
        X.append(x)
        Y.append(y)
        pt = (x, y)

        label = subject.replace("Subject", "")
        label_map.setdefault(pt, [])
        label_map[pt].append(label)

    for location, labels in label_map.iteritems():
        x, y = location
        y_curr = y
        for label in labels:
            mpl.text(x, y_curr, label)
            y_curr += 0.05

    mpl.scatter(X, Y)
    mpl.xlabel("Average # of spatial relations")
    mpl.ylabel("Number correct at %.0f meters" % threshold)
    print "average utilized sdcs", total_sdcs / total_sentences
    print "average utilized sr sdcs", total_sr_sdcs / total_sentences
    print "average utilized landmark sdcs", total_landmark_sdcs / total_sentences

    print "average raw sdcs", total_raw_sdcs / total_sentences
    print "average raw sr sdcs", total_raw_sr_sdcs / total_sentences
    print "average raw landmark sdcs", total_raw_landmark_sdcs / total_sentences

    mpl.show()
Example #9
0
    def __init__(self, m4du, corpus_fname=None, addFigureToMainWindow=True):
        QMainWindow.__init__(self)
        self.setupUi(self)

        self.m4du = m4du
        self.m4du.save_update_args = True
        self.corpus_fname = corpus_fname

        self.extractor = dir_util.direction_parser_sdc()

        self.landmarkSelector = landmarkSelector.MainWindow(self.m4du)
        self.spatialRelationsSelector = spatialRelationsSelector.MainWindow(
            self.m4du)

        self.connect(
            self.landmarkSelector.landmarkSelectorTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectLandmarks)

        self.connect(self.submitButton, SIGNAL("clicked()"),
                     self.followDirections)

        self.connect(self.zoomToMagicSpotButton, SIGNAL("clicked()"),
                     self.load_ranges)

        self.connect(self.actionPreferences, SIGNAL("triggered()"),
                     self.showPreferences)

        self.connect(self.actionClear, SIGNAL("triggered()"),
                     self.clearDrawings)

        self.connect(self.actionSelectSpatialRelations, SIGNAL("triggered()"),
                     self.showSpatialRelationsSelector)

        self.connect(self.actionSaveLimits, SIGNAL("triggered()"),
                     self.saveLimits)

        self.connect(self.actionRestoreLimits, SIGNAL("triggered()"),
                     self.restoreLimits)

        self.connect(self.jointVpToSlocElocButton, SIGNAL("clicked()"),
                     self.jointVpToSlocEloc)

        self.connect(self.viewSrClassifierButton, SIGNAL("clicked()"),
                     self.viewSrClassifier)

        self.figure = mpl.figure()
        self.axes = self.figure.gca()

        if addFigureToMainWindow:
            self.oldParent = self.figure.canvas.parent()
            self.figure.canvas.setParent(self)
            self.matplotlibFrame.layout().addWidget(self.figure.canvas)
        self.limits = None

        self.figure.canvas.mpl_connect('draw_event', self.updateLimits)
        print "m4du", m4du, hasattr(self.m4du, "boundingBox")

        plot_map_for_model(self.m4du)

        self.pathPlot, = self.figure.gca().plot([], [],
                                                '--',
                                                linewidth=4,
                                                color="black")
        self.startPlot, = self.figure.gca().plot([], [], 'go-')
        self.endPlot, = self.figure.gca().plot([], [], 'ro-')
        self.selectedLandmarkPlot = None
        self.selectedElocPlots = []
        self.selectedSlocPlots = []
        self.selectedStartingSlocPlots = []
        self.correctElocPlots = []

        self.landmarkPlots = []
        self.plotLandmarks()

        self.transitionPlotDrawer = TransitionDrawer(self,
                                                     self.slocTransitionsBox)
        self.observationPlotDrawer = ObservationDrawer(
            self, self.slocObservationProbabilityCheckBox)
        self.verbPlotDrawer = VerbDrawer(self,
                                         self.slocVerbProbabilityCheckBox)

        self.viewpointLandmarkPlotDrawer = ViewpointLandmarkDrawer(
            self, self.landmarkProbsCheckBox)

        self.topoDrawer = TopoDrawer(self, self.showTopologyBox)

        self.connect(self.filterBySlocBox, SIGNAL("stateChanged(int)"),
                     self.updateFilters)
        self.connect(self.filterByElocBox, SIGNAL("stateChanged(int)"),
                     self.updateFilters)

        self.connect(self.useSpatialRelationsBox, SIGNAL("stateChanged(int)"),
                     self.toggleSpatialRelations)
        self.connect(self.showLandmarksCheckBox, SIGNAL("stateChanged(int)"),
                     self.toggleLandmarks)

        self.connect(self.useWizardOfOzSdcsCheckBox,
                     SIGNAL("stateChanged(int)"), self.toggleSdcExtractor)
        #self.useWizardOfOzSdcsCheckBox.setCheckState(Qt.Checked)

        self.showLandmarksCheckBox.setCheckState(Qt.Unchecked)

        self.toolbar = NavigationToolbar2QT(self.figure.canvas, self)
        self.addToolBar(self.toolbar)

        self.sdcModel = sdcTableModel.Model(self.m4du, self.sdcTable)
        self.landmarkModel = landmarkTableModel.Model(self.landmarkTable,
                                                      self.m4du)

        #self.editorWindow = editorwindow.makeWindow()
        #self.editorWindow.engineMap = self.m4du.sr_class.engineMap
        #self.editorWindow.show()

        self.startingSlocModel = viewpointTableModel.Model(
            self.startingSlocTable, self.m4du, "starting sloc")
        self.jointViewpointModel = viewpointAndObservationProbabilityTableModel.Model(
            self.jointViewpointTable, self.m4du)

        self.slocModel = viewpointTableModel.Model(self.slocTable, self.m4du,
                                                   "sloc")
        self.elocModel = viewpointTableModel.Model(self.elocTable, self.m4du,
                                                   "eloc")

        self.connect(
            self.jointViewpointTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectJointViewpoint)

        self.connect(
            self.sdcTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectSdc)

        self.connect(
            self.landmarkTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectLandmark)

        self.connect(
            self.slocTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectSloc)

        self.connect(
            self.startingSlocTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectStartingSloc)

        self.connect(
            self.elocTable.selectionModel(),
            SIGNAL("selectionChanged ( QItemSelection, QItemSelection )"),
            self.selectEloc)
        self.startingSlocTable.selectRow(133)

        if hasattr(self.m4du, "boundingBox") and self.m4du.boundingBox != None:
            X, Y = na.transpose(self.m4du.boundingBox)
            self.limits = min(X), max(X), min(Y), max(Y)
            self.mpl_draw()
    def __init__(self,
                 m4du,
                 rndf_file,
                 inference_type="local",
                 num_explorations=None,
                 exploration_heuristics_name=None,
                 parameters=None):
        self.lc = lcm.LCM()

        #load the model
        print "Loading model..."
        self.dg_model = cPickle.load(open(m4du, 'r'))
        self.rndf = ru.rndf(rndf_file, True)
        self.sdc_parser = direction_parser_sdc()

        self.trans_xyz = (0, 0, 0)
        self.trans_latlon = self.rndf.origin
        self.trans_theta = 0

        self.run_inference = True
        self.waypoints = []
        self.cmd = None

        self.curr_location = None
        self.curr_orientation = None

        # Change these two for testing; to be replaced by LCM message
        #self.curr_location = (0, 0, 0)
        #self.cmd = str("Go to the truck")

        #local vs global inference
        if inference_type in [None, ""]:
            self.inference_type = "local"
        elif inference_type != "global":
            self.inference_type = "local"
        else:
            self.inference_type = "global"

        if num_explorations in [None, ""]:
            #TODO replace 2 by the branching factor or something else.
            self.num_explorations = len(self.dg_model.tmap_locs.keys()) / 2
        else:
            self.num_explorations = int(num_explorations)

        if exploration_heuristics_name in [None, ""]:
            self.exploration_heuristics_name = "lifted_stairs"
        else:
            self.exploration_heuristics_name = exploration_heuristics_name

        if self.exploration_heuristics_name == "slope_offset_delay":
            if parameters not in [None, ""]:
                params_str = parameters.split(":")
                if len(params_str) == 3:
                    self.params_num = map(float, params_str)
                else:
                    self.params_num = None
        else:
            self.params_num = None

        self.lc.subscribe("DIRECTION_INPUT", self.on_comment_msg)
        self.lc.subscribe("POSE", self.on_pose_msg)
        self.lc.subscribe("GPS_TO_LOCAL", self.on_transform_msg)
Example #11
0
    def __init__(self, corpus_fn, model_fn, gtruth_tag_fn, map_fn, output_dir, options, 
                 evaluation_mode="specialized", 
                 num_to_run=None, is_sum_product=False, num_align=None,
                 no_spatial_relations=False, do_exploration=False, quadrant_number=None,
                 wizard_of_oz_sdcs=None, run_description=None, inference="global", topN_num_paths=None,num_explorations=None,exploration_heuristics_name=None, parameters=None):
        print "num_to_run", num_to_run
        print "options", options
        options["model_fn"] = model_fn
        options["corpus_fn"] = corpus_fn
        options["gtruth_tag_fn"] = gtruth_tag_fn
        if inference == "":
            inference = "global"
            options["inference"]=inference
        self.range_to_run = None
        if num_to_run == "":
            num_to_run = None
        elif type(num_to_run)==type("abc") and num_to_run.find(":")!=-1:
            range_from = int(num_to_run.split(":")[0])
            range_to = int(num_to_run.split(":")[1])
            self.range_to_run = range(range_from,range_to)
            num_to_run = range_to
        elif num_to_run != None:
            num_to_run = int(num_to_run)

        if type(num_to_run) == type(1) and self.range_to_run==None:
            self.range_to_run = range(num_to_run)
        if self.range_to_run == None:
            #running all of them.
            if(quadrant_number==None):
                self.dsession = readSession(corpus_fn, "none")
            else:
                self.dsession = readSession(corpus_fn, "none", quadrant=int(quadrant_number))
            self.range_to_run = []
            sent_num_i = 0
            for elt in self.dsession:
                for i in range(len(elt.routeInstructions)):
                    self.range_to_run.append(sent_num_i)
                    sent_num_i += 1

        if num_explorations in [None, ""]:
            num_explorations=50
        else:
            num_explorations=int(num_explorations)                
                
        self.options = options
        self.output_dir = output_dir
        self.inference = inference

        self.num_align = num_align
        self.num_to_run = num_to_run
        self.is_sum_product = is_sum_product
        self.num_align = num_align

        if run_description == None:
            run_description = model_fn
            if inference !=None:
                run_description += " " + run_description
            if no_spatial_relations:
                run_description += " -sr"
            else:
                run_description += " +sr"
        self.run_description = run_description
        
            

        if(quadrant_number==None):
            self.dsession = readSession(corpus_fn, "none")
            #res = raw_input("running all examples!  Continue?")
            #if(res.lower() == 'n' or res.lower() == "no"):
            #    sys.exit(0);
        else:
            self.dsession = readSession(corpus_fn, "none", quadrant=int(quadrant_number))
        
        self.dg_model = cPickle.load(open(model_fn, 'r'))
        self.dg_model.use_spatial_relations = not no_spatial_relations
        
        if inference == "greedy":
            self.dg_model = greedy.model(self.dg_model)
        elif inference == "last_sdc":
            self.dg_model = last_sdc.model(self.dg_model)
        elif inference == "topN":
            if topN_num_paths == None or topN_num_paths=="":
                self.topN_num_paths = 10
            else:
                self.topN_num_paths = int(topN_num_paths)
            self.dg_model = topN.model(self.dg_model,self.topN_num_paths)
        elif inference == "global":
            pass
        else:
            raise ValueError("Bad inference value: " + inference)
        
        #self.do_exploration = eval(str(do_exploration))
        self.do_exploration = do_exploration
        
        if evaluation_mode == "best_path":
            self.orient = get_orientations_each
        elif evaluation_mode == "max_prob":
            self.orient = get_orientations_all
        elif evaluation_mode == "specialized":
            self.orient = get_orientations_annotated
        else:
            raise ValueError("Unexpected mode: " + `evaluation_mode`)
        #this will load the srel_mat
        #if(isinstance(self.dg_model, model4_du.model4_du)):
        print "loading srel_mat"
        self.dg_model.initialize()
    
        #open the ground truth file
        self.tf = tag_file(gtruth_tag_fn, map_fn)
        self.gtruth_tag_fn = gtruth_tag_fn
        
        #map the topological regions to teh ground truth regions
        self.topohash = get_region_to_topo_hash_containment(self.tf, self.dg_model)

        print "getting topological paths"
        self.topo_graph_D = get_topological_paths_hash(self.dg_model.clusters)
        #cPickle.dump(self.topo_graph_D, open("topo_graph_D", "wb"), 2)
        #self.topo_graph_D = cPickle.load(open("topo_graph_D", "r"))
        
        if wizard_of_oz_sdcs != None:
            print "using wizard", wizard_of_oz_sdcs
            self.sdc_parser = direction_parser_wizard_of_oz(corpus_fn, wizard_of_oz_sdcs)
        else:
            print "using crfs"
            self.sdc_parser = direction_parser_sdc()
        
        if num_explorations in [None, ""]:
            #TODO replace 2 by the branching factor or something else.
            self.num_explorations=len(self.dg_model.tmap_locs.keys()) / 2
        else:
            self.num_explorations=int(num_explorations)
            
        if exploration_heuristics_name in [None,""]:
            self.exploration_heuristics_name = "lifted_stairs"
        else:
            self.exploration_heuristics_name = exploration_heuristics_name
            
        if self.exploration_heuristics_name == "slope_offset_delay":
            if parameters not in [None, ""]:
                params_str = parameters.split(":")  
                if len(params_str)==3:
                    self.params_num = map(float,params_str)
                else:
                    self.params_num = None
        else:
            self.params_num = None