Example #1
0
def prove(data,N):
    clear_cache()
    M = len(data)

    # curve points
    G = dumb25519.G
    H = hash_to_point('pybullet H')
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(M*N)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(M*N)])

    # set amount commitments
    V = PointVector([])
    aL = ScalarVector([])
    for v,gamma in data:
        V.append((H*v + G*gamma)*inv8)
        mash(V[-1])
        aL.extend(scalar_to_bits(v,N))

    # set bit arrays
    aR = ScalarVector([])
    for bit in aL.scalars:
        aR.append(bit-Scalar(1))

    alpha = random_scalar()
    A = (Gi*aL + Hi*aR + G*alpha)*inv8

    sL = ScalarVector([random_scalar()]*(M*N))
    sR = ScalarVector([random_scalar()]*(M*N))
    rho = random_scalar()
    S = (Gi*sL + Hi*sR + G*rho)*inv8

    # get challenges
    mash(A)
    mash(S)
    y = cache
    y_inv = y.invert()
    mash('')
    z = cache

    # polynomial coefficients
    l0 = aL - ScalarVector([z]*(M*N))
    l1 = sL

    # ugly sum
    zeros_twos = []
    for i in range (M*N):
        zeros_twos.append(Scalar(0))
        for j in range(1,M+1):
            temp = Scalar(0)
            if i >= (j-1)*N and i < j*N:
                temp = Scalar(2)**(i-(j-1)*N)
            zeros_twos[-1] += temp*(z**(1+j))
    
    # more polynomial coefficients
    r0 = aR + ScalarVector([z]*(M*N))
    r0 = r0*exp_scalar(y,M*N)
    r0 += ScalarVector(zeros_twos)
    r1 = exp_scalar(y,M*N)*sR

    # build the polynomials
    t0 = l0**r0
    t1 = l0**r1 + l1**r0
    t2 = l1**r1

    tau1 = random_scalar()
    tau2 = random_scalar()
    T1 = (H*t1 + G*tau1)*inv8
    T2 = (H*t2 + G*tau2)*inv8

    mash(T1)
    mash(T2)
    x = cache # challenge

    taux = tau1*x + tau2*(x**2)
    for j in range(1,M+1):
        gamma = data[j-1][1]
        taux += z**(1+j)*gamma
    mu = x*rho+alpha
    
    l = l0 + l1*x
    r = r0 + r1*x
    t = l**r

    mash(taux)
    mash(mu)
    mash(t)

    x_ip = cache # challenge
    L = PointVector([])
    R = PointVector([])
   
    # initial inner product inputs
    data_ip = [Gi,PointVector([Hi[i]*(y_inv**i) for i in range(len(Hi))]),H*x_ip,l,r,None,None]
    while True:
        data_ip = inner_product(data_ip)

        # we have reached the end of the recursion
        if len(data_ip) == 2:
            return [V,A,S,T1,T2,taux,mu,L,R,data_ip[0],data_ip[1],t]

        # we are not done yet
        L.append(data_ip[-2])
        R.append(data_ip[-1])
Example #2
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof.L) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        tr = transcript.Transcript('Bulletproof')

        V = proof.V
        A = proof.A
        S = proof.S
        T1 = proof.T1
        T2 = proof.T2
        taux = proof.taux
        mu = proof.mu
        L = proof.L
        R = proof.R
        a = proof.a
        b = proof.b
        t = proof.t

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct challenges
        for v in V:
            tr.update(v)
        tr.update(A)
        tr.update(S)
        y = tr.challenge()
        if y == Scalar(0):
            raise ArithmeticError
        y_inv = y.invert()
        z = tr.challenge()
        if z == Scalar(0):
            raise ArithmeticError
        tr.update(T1)
        tr.update(T2)
        x = tr.challenge()
        if x == Scalar(0):
            raise ArithmeticError
        tr.update(taux)
        tr.update(mu)
        tr.update(t)
        x_ip = tr.challenge()
        if x_ip == Scalar(0):
            raise ArithmeticError

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            tr.update(L[i])
            tr.update(R[i])
            W.append(tr.challenge())
            if W[i] == Scalar(0):
                raise ArithmeticError
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(Gc)
    scalars.append(-y1+z3)
    points.append(Hc)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad verification!')

    return True
Example #3
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = hash_to_point('pybullet H')
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    z1 = Scalar(0)
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN
    scalars = ScalarVector([]) # for final check
    points = PointVector([]) # for final check

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factors for batching
        weight_y = random_scalar()
        weight_z = random_scalar()
        if weight_y == Scalar(0) or weight_z == Scalar(0):
            raise ArithmeticError

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        if cache == Scalar(0):
            raise ArithmeticError
        y = cache
        y_inv = y.invert()
        mash('')
        if cache == Scalar(0):
            raise ArithmeticError
        z = cache
        mash(T1)
        mash(T2)
        if cache == Scalar(0):
            raise ArithmeticError
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        if cache == Scalar(0):
            raise ArithmeticError
        x_ip = cache

        y0 += taux*weight_y
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*weight_y

        for j in range(M):
            scalars.append(z**(j+2)*weight_y)
            points.append(V[j]*Scalar(8))
        scalars.append(x*weight_y)
        points.append(T1*Scalar(8))
        scalars.append(x**2*weight_y)
        points.append(T2*Scalar(8))

        scalars.append(weight_z)
        points.append(A*Scalar(8))
        scalars.append(x*weight_z)
        points.append(S*Scalar(8))

        # inner product
        W = ScalarVector([])
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            if cache == Scalar(0):
                raise ArithmeticError
            W.append(cache)
        W_inv = W.invert()

        for i in range(M*N):
            index = i
            g = a
            h = b*((y_inv)**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W_inv[J]
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W_inv[J]
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y_inv)**i)

            z4[i] += g*weight_z
            z5[i] += h*weight_z

        z1 += mu*weight_z

        for i in range(len(L)):
            scalars.append(W[i]**2*weight_z)
            points.append(L[i]*Scalar(8))
            scalars.append(W_inv[i]**2*weight_z)
            points.append(R[i]*Scalar(8))
        z3 += (t-a*b)*x_ip*weight_z
    
    # now check all proofs together
    scalars.append(-y0-z1)
    points.append(G)
    scalars.append(-y1+z3)
    points.append(H)
    for i in range(max_MN):
        scalars.append(-z4[i])
        points.append(Gi[i])
        scalars.append(-z5[i])
        points.append(Hi[i])

    if not dumb25519.multiexp(scalars,points) == Z:
        raise ArithmeticError('Bad z check!')

    return True
Example #4
0
def prove(data,N):
    tr = transcript.Transcript('Bulletproof')
    M = len(data)

    # curve points
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(M*N)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(M*N)])

    # set amount commitments
    V = PointVector([])
    aL = ScalarVector([])
    for v,gamma in data:
        V.append(com(v,gamma)*inv8)
        tr.update(V[-1])
        aL.extend(scalar_to_bits(v,N))

    # set bit arrays
    aR = ScalarVector([])
    for bit in aL.scalars:
        aR.append(bit-Scalar(1))

    alpha = random_scalar()
    A = (Gi**aL + Hi**aR + Gc*alpha)*inv8

    sL = ScalarVector([random_scalar()]*(M*N))
    sR = ScalarVector([random_scalar()]*(M*N))
    rho = random_scalar()
    S = (Gi**sL + Hi**sR + Gc*rho)*inv8

    # get challenges
    tr.update(A)
    tr.update(S)
    y = tr.challenge()
    z = tr.challenge()
    y_inv = y.invert()

    # polynomial coefficients
    l0 = aL - ScalarVector([z]*(M*N))
    l1 = sL

    # for polynomial coefficients
    zeros_twos = []
    z_cache = z**2
    for j in range(M):
        for i in range(N):
            zeros_twos.append(z_cache*2**i)
        z_cache *= z
    
    # more polynomial coefficients
    r0 = aR + ScalarVector([z]*(M*N))
    r0 = r0*exp_scalar(y,M*N)
    r0 += ScalarVector(zeros_twos)
    r1 = exp_scalar(y,M*N)*sR

    # build the polynomials
    t0 = l0**r0
    t1 = l0**r1 + l1**r0
    t2 = l1**r1

    tau1 = random_scalar()
    tau2 = random_scalar()
    T1 = com(t1,tau1)*inv8
    T2 = com(t2,tau2)*inv8

    tr.update(T1)
    tr.update(T2)
    x = tr.challenge()

    taux = tau1*x + tau2*(x**2)
    for j in range(1,M+1):
        gamma = data[j-1][1]
        taux += z**(1+j)*gamma
    mu = x*rho+alpha
    
    l = l0 + l1*x
    r = r0 + r1*x
    t = l**r

    tr.update(taux)
    tr.update(mu)
    tr.update(t)
    x_ip = tr.challenge()

    # initial inner product inputs
    data = InnerProductRound(Gi,PointVector([Hi[i]*(y_inv**i) for i in range(len(Hi))]),Hc*x_ip,l,r,tr)
    while True:
        inner_product(data)

        # we have reached the end of the recursion
        if data.done:
            return Bulletproof(V,A,S,T1,T2,taux,mu,data.L,data.R,data.a,data.b,t)