Example #1
0
def test_numpyvector():
    """
    Test correct exchange of numpy arrays to C++ side.
    """
    from dune.generator.algorithm import run
    x = array([0.] * 100)
    run("run", StringIO(runVec), x)
    for i in range(len(x)):
        assert x[i] == float(i)
Example #2
0
def test_class_export():
    from dune.generator.importclass import load
    from dune.generator.algorithm   import run
    from dune.generator import path
    from dune.typeregistry import generateTypeName
    cls = load("MyClassA",StringIO(classACode),10,20)
    assert run("run",StringIO(runCode),cls) == 10*20
    clsName,includes = generateTypeName("MyClassB",cls)
    cls = load(clsName,StringIO(classBCode),cls,2)
    assert run("run",StringIO(runCode),cls) == 10**2*20**2
Example #3
0
def test_class_export():
    from dune.generator.importclass import load
    from dune.generator.algorithm import run
    from dune.typeregistry import generateTypeName
    a = 2.
    x = array([2.] * 10)
    cls = load("MyClassA", StringIO(classACode), 10, 20)
    assert run("run", StringIO(runCode), cls) == 10 * 20
    clsName, _ = generateTypeName("MyClassB", cls)
    cls = load(clsName, StringIO(classBCode), cls, 2, x)
    assert run("run", StringIO(runCode), cls) == 10**2 * 10 * a
    x[:] = array([3.] * 10)[:]
    assert run("run", StringIO(runCode), cls) == 10**2 * 10 * 3
    # the following does not work
    x = array([4.] * 10)
    # the 'B' class still keeps the old vector 'x' alive
    assert run("run", StringIO(runCode), cls) == 10**2 * 10 * 3
Example #4
0
def dfAssign(self, other):
    """ assign dofs of other discrete function to self
    Args:
        self: discrete function
        other: other discrete function
    """
    try:
        # try natural, when dof vectors match
        # (which is slightly more than df's match)
        self.dofVector.assign(other.dofVector)
    except:
        # this is the case when storage is different
        import io
        from dune.generator import algorithm
        _assignCode = \
"""
template <class A, class B>
void assignDF( A& a, const B& b )
{
  a.assign( b );
}
"""
        algorithm.run('assignDF', io.StringIO(_assignCode), self, other)
Example #5
0
              grid.size(0),
              sum(estimate.dofVector),
              hTol,
              "# timestep",
              flush=True)
        plot(solution[1], figsize=(15, 4))
        saveStep += 100

# <markdowncell>
# Postprocessing
# Show solution along a given line

# <codecell>
x0 = FieldVector([0.25, 0.65])
x1 = FieldVector([0.775, 0.39])
p, v = algorithm.run('sample', 'utility.hh', solution, x0, x1, 1000)

from matplotlib import pyplot
import numpy

x = numpy.zeros(len(p))
y = numpy.zeros(len(p))
l = (x1 - x0).two_norm
for i in range(len(x)):
    x[i] = (p[i] - x0).two_norm / l
    y[i] = v[i][1]
pyplot.plot(x, y)
pyplot.show()

# <markdowncell>
Example #6
0
# <markdowncell>
# Instead of plotting this using paraview we want to only study the
# solution along a single line. This requires findings points
# $x_i = x_0+\frac{i}{N}(x1-x0)$ for $i=0,\dots,N$ within the unstructured
# grid. This would be expensive to compute on the Python so we implement
# this algorithm in C++ using the `LineSegmentSampler` class available in
# `Dune-Fem`. The resulting `algorithm` returns a pair of two lists with
# coordinates $x_i$ and the values of the grid function at these points:
#
# .. literalinclude:: utility.hh
#
# <codecell>
import dune.generator.algorithm as algorithm
from dune.common import FieldVector
x0, x1 = FieldVector([0, 0, 0]), FieldVector([0, 0, 1])
p, v = algorithm.run('sample', 'utility.hh', uh3d, x0, x1, 100)
x, y = numpy.zeros(len(p)), numpy.zeros(len(p))
length = (x1 - x0).two_norm
for i in range(len(x)):
    x[i] = (p[i] - x0).two_norm / length
    y[i] = v[i][0]
pyplot.plot(x, y)
pyplot.show()

# <markdowncell>
# **Note**: the coordinates returned are always in the interval $[0,1]$ so
# if physical coordinates are required, they need to be rescaled.
# Also, function values returned by the `sample` function
# are always of a `FieldVector` type, so that even for a scalar example
# a `v[i]` is a vector of dimension one, so that `y[i]=v[i][0]` has to be
# used.
Example #7
0
w = spc.interpolate([0],name="tmp")
op(uh, w)
dgError = [ math.sqrt( integrate(grid,(uh[0]-exact[0])**2,order=7) ),
            math.sqrt( integrate(grid,inner(grad(uh[0]-exact[0]),grad(uh[0]-exact[0])),order=7)\
            + w.scalarProductDofs(uh)) ]
l2Errors = [dgError[0]]
h1Errors = [dgError[1]]

zh = spc.interpolate([0],name="dual_h")
dualOp = create.scheme("galerkin", [adjoint(a)==0],
                 spc, solver="cg",
                 parameters={"newton." + k: v for k, v in newtonParameter.items()})
pointFunctional = spc.interpolate([0],name="pointFunctional")
point = FieldVector([0.6,0.4])
errors = [ expression2GF(grid, exact-s, reconOrder) for s in solutions ]
dualErrors = algorithm.run('pointFunctional', 'pointfunctional.hh', point, pointFunctional, *errors)
dualOp.solve(target=zh, rhs=pointFunctional)
dualWeight.project(zh-zh)

for i in range(levels):
        if error[2][useEstimate] < tolerance:
            print("COMPLETED:",error[2][useEstimate],"<",tolerance)
            break
        marked = mark(estimate, error[2][useEstimate]/grid.size(0))
        print("elements marked:", marked,"/",grid.size(0),flush=True)
        if sum(marked)==0: break
        adapt(uh)
        loadBalance(uh)
        level += 1
    _, solutions, error = compute(uh)
Example #8
0
    gamma = delta/oldDelta
    d *= gamma
    d += r
velocity.plot(colorbar="horizontal")

###############################################################

# Note: the models are virtualize so op.model().nu() will not work on the C++ side
#       so we either need to 'devirtualize' or pass in nu,mu
from dune.generator import algorithm
velocity = spcU.interpolate([0,]*spcU.dimRange, name="velocity")
pressure = spcP.interpolate([0], name="pressure")

# get main forcing and set constraints
mainOp(velocity,rhsVelo)
rhsVelo *= -1
G(pressure,xi)
rhsVelo -= xi
mainOp.setConstraints(rhsVelo)
mainOp.setConstraints(velocity)

uzawa = algorithm.run('uzawa', 'uzawa.hh',
            mainOp.model.nu,mainOp.model.mu,
            mainOp, G, D, Ainv, Minv, Pinv, rhsVelo, xi, rhsPress, r, d,
            precon, velocity, pressure)

fig = pyplot.figure(figsize=(20,10))
velocity.plot(colorbar="horizontal", figure=(fig, 121))
pressure.plot(colorbar="horizontal", figure=(fig, 122))
pyplot.show()