Example #1
0
def test_balance():
    """ Test balance scenario """
    gp_par = gp.GpParameters()
    gp_par.ind_start_length = 8
    gp_par.n_population = 16
    gp_par.f_crossover = 0.5
    gp_par.n_offspring_crossover = 2
    gp_par.replace_crossover = False
    gp_par.f_mutation = 0.5
    gp_par.n_offspring_mutation = 2
    gp_par.parent_selection = gp.SelectionMethods.RANK
    gp_par.survivor_selection = gp.SelectionMethods.RANK
    gp_par.f_elites = 0.1
    gp_par.f_parents = gp_par.f_elites
    gp_par.mutate_co_offspring = False
    gp_par.mutate_co_parents = True
    gp_par.mutation_p_add = 0.4
    gp_par.mutation_p_delete = 0.3
    gp_par.allow_identical = False
    gp_par.plot = True
    gp_par.n_generations = 300
    gp_par.verbose = False
    gp_par.fig_last_gen = False

    behavior_tree.load_settings_from_file(
        'duplo_state_machine/BT_SETTINGS_BALANCE.yaml')
    planner_baseline = ['s(', 'f(', '0 at pos (0.0, 0.0, 0.0192)?', \
                                    's(', 'f(', '1 at pos (0.0, 0.0, 0.0)?', 'put 1 at (0.0, 0.0, 0.0)!', ')', \
                                          'f(', '0 on 1?', 'put 0 on 1!', ')', 'apply force 0!', ')', ')', ')']

    solved = ['f(', '0 at pos (0.0, 0.0, 0.0192)?', \
                    's(', 'put 2 at (0.0, 0.0, 0.0)!', 'put 0 on 2!', 'apply force 0!', ')', ')']

    start_positions = []
    start_positions.append(Pos(-0.05, -0.1, 0.0))
    start_positions.append(Pos(0.0, -0.1, 0.0))
    start_positions.append(Pos(0.05, -0.1, 0.0))
    targets = []
    targets.append(Pos(0.0, 0.0, 0.0192))
    fitness_coeff = Coefficients()
    fitness_coeff.hand_not_empty = 100.0

    environment = sm_environment.Environment(start_positions, targets, verbose=False, \
                                             mode=sm.SMMode.BALANCE, fitness_coeff=fitness_coeff)

    fitness = environment.get_fitness(planner_baseline)
    assert fitness < -10

    fitness = environment.get_fitness(solved)
    assert fitness > -1

    gp_par.log_name = 'test_balance'
    _, _, best_fitness, _ = gp.run(environment,
                                   gp_par,
                                   baseline=planner_baseline)
    assert best_fitness[-1] > -1

    behavior_tree.load_settings_from_file(
        'behavior_tree_learning/tests/BT_TEST_SETTINGS.yaml')
Example #2
0
def test_croissant():
    """ Test croissant scenario """
    gp_par = gp.GpParameters()
    gp_par.ind_start_length = 8
    gp_par.n_population = 16
    gp_par.f_crossover = 0.5
    gp_par.n_offspring_crossover = 2
    gp_par.replace_crossover = False
    gp_par.f_mutation = 0.5
    gp_par.n_offspring_mutation = 2
    gp_par.parent_selection = gp.SelectionMethods.RANK
    gp_par.survivor_selection = gp.SelectionMethods.RANK
    gp_par.f_elites = 0.1
    gp_par.f_parents = gp_par.f_elites
    gp_par.mutate_co_offspring = False
    gp_par.mutate_co_parents = True
    gp_par.mutation_p_add = 0.4
    gp_par.mutation_p_delete = 0.3
    gp_par.allow_identical = False
    gp_par.plot = True
    gp_par.n_generations = 1000
    gp_par.verbose = False
    gp_par.fig_last_gen = False

    behavior_tree.load_settings_from_file(
        'duplo_state_machine/BT_SETTINGS_CROISSANT.yaml')
    planner_baseline = ['s(', 'f(', '0 at pos (0.0, 0.0, 0.0)?', \
                                    's(', 'f(', 'picked 0?', 'pick 0!', ')', 'place at (0.0, 0.0, 0.0)!', ')', ')', \
                        'f(', '1 at pos (0.0, 0.0, 0.0192)?', \
                              's(', 'f(', '1 on 0?', 's(', 'f(', 'picked 1?', 'pick 1!', ')', 'place on 0!', ')', ')', \
                                    'apply force 1!', ')', ')', \
                        'f(', '2 at pos (0.016, -0.032, 0.0)?', \
                              's(', 'f(', 'picked 2?', 'pick 2!', ')', 'place at (0.016, -0.032, 0.0)!', ')', ')', \
                        'f(', '3 at pos (0.016, 0.032, 0.0)?', \
                              's(', 'f(', 'picked 3?', 'pick 3!', ')', 'place at (0.016, 0.032, 0.0)!', ')', ')', ')']

    solved = ['s(', 'f(', '0 at pos (0.0, 0.0, 0.0)?', 's(', 'pick 0!', 'place at (0.0, 0.0, 0.0)!', ')', ')', \
                        'f(', '2 at pos (0.016, -0.032, 0.0)?', \
                              's(', 'pick 2!', 'place at (0.016, -0.032, 0.0)!', ')', ')', \
                        'f(', '3 at pos (0.016, 0.032, 0.0)?', \
                              's(', 'pick 3!', 'place at (0.016, 0.032, 0.0)!', ')', ')', \
                        'f(', '1 at pos (0.0, 0.0, 0.0192)?', \
                              's(', 'f(', '1 on 0?', 's(', 'pick 1!', 'place on 0!', ')', ')', \
                                    'apply force 1!', ')', ')', ')']

    start_positions = []
    start_positions.append(Pos(-0.05, -0.1, 0))
    start_positions.append(Pos(0, -0.1, 0))
    start_positions.append(Pos(0.05, -0.1, 0))
    start_positions.append(Pos(0.1, -0.1, 0))
    targets = []
    targets.append(Pos(0.0, 0.0, 0.0))
    targets.append(Pos(0.0, 0.0, 0.0192))
    targets.append(Pos(0.016, -0.032, 0.0))
    targets.append(Pos(0.016, 0.032, 0.0))
    environment = sm_environment.Environment(start_positions,
                                             targets,
                                             verbose=False,
                                             mode=sm.SMMode.CROISSANT)

    fitness = environment.get_fitness(planner_baseline)
    assert fitness < -100

    fitness = environment.get_fitness(solved)
    assert fitness > -3

    gp_par.log_name = 'test_croissant'
    _, _, best_fitness, _ = gp.run(environment,
                                   gp_par,
                                   baseline=planner_baseline)
    assert best_fitness[-1] > -4

    behavior_tree.load_settings_from_file(
        'behavior_tree_learning/tests/BT_TEST_SETTINGS.yaml')
Example #3
0
def test_baselining():
    # pylint: disable=too-many-statements
    """ Tests various baseline setups in the blocking task """
    gp_par = gp.GpParameters()
    gp_par.ind_start_length = 8
    gp_par.n_population = 16
    gp_par.f_crossover = 0.5
    gp_par.n_offspring_crossover = 2
    gp_par.replace_crossover = False
    gp_par.f_mutation = 0.5
    gp_par.n_offspring_mutation = 2
    gp_par.parent_selection = gp.SelectionMethods.RANK
    gp_par.survivor_selection = gp.SelectionMethods.RANK
    gp_par.f_elites = 0.1
    gp_par.f_parents = gp_par.f_elites
    gp_par.mutate_co_offspring = False
    gp_par.mutate_co_parents = True
    gp_par.mutation_p_add = 0.4
    gp_par.mutation_p_delete = 0.3
    gp_par.allow_identical = False
    gp_par.plot = True
    gp_par.verbose = False
    gp_par.fig_last_gen = False

    behavior_tree.load_settings_from_file(
        'duplo_state_machine/BT_SETTINGS_BLOCKING.yaml')
    planner_baseline = ['s(', 'f(', '0 at pos (-0.1, 0.0, 0.0)?', 'put 0 at (-0.1, 0.0, 0.0)!', ')', \
                    'f(', '1 at pos (-0.1, 0.0, 0.0192)?', \
                          's(', 'f(', '1 on 0?', 'put 1 on 0!', ')', 'apply force 1!', ')', ')', \
                    'f(', '2 at pos (0.0, 0.0, 0.0)?', 'put 2 at (0.0, 0.0, 0.0)!', ')', ')']

    start_positions = []
    start_positions.append(sm.Pos(0.0, -0.05, 0.0))
    start_positions.append(sm.Pos(0.0, 0.05, 0.0))
    start_positions.append(sm.Pos(-0.1, 0.0, 0.0))

    targets = []
    targets.append(Pos(-0.1, 0.0, 0.0))
    targets.append(Pos(-0.1, 0.0, 0.0192))
    targets.append(Pos(0.0, 0.0, 0.0))

    environment = sm_environment.Environment(start_positions,
                                             targets,
                                             verbose=False,
                                             mode=sm.SMMode.BLOCKING)

    n_logs = 10
    gp_par.n_generations = 10
    best_list_baseline_no_keep = []
    gp_par.keep_baseline = False
    for i in range(1, n_logs + 1):
        gp_par.log_name = 'test_baseline_no_keep' + str(i)
        gp.set_seeds(i)
        _, _, best_fitness, _ = gp.run(environment,
                                       gp_par,
                                       baseline=planner_baseline)
        best_list_baseline_no_keep.append(best_fitness[-1])

    gp_par.n_generations = 200
    best_list_baseline = []
    for i in range(1, n_logs + 1):
        gp_par.log_name = 'test_baseline' + str(i)
        gp.set_seeds(i)
        _, _, best_fitness, _ = gp.run(environment,
                                       gp_par,
                                       baseline=planner_baseline)
        best_list_baseline.append(best_fitness[-1])

    best_list_baseline_boost = []
    gp_par.keep_baseline = True
    gp_par.boost_baseline = True
    gp_par.boost_baseline_only_co = False
    for i in range(1, n_logs + 1):
        gp_par.log_name = 'test_baseline_boost' + str(i)
        gp.set_seeds(i)
        _, _, best_fitness, _ = gp.run(environment,
                                       gp_par,
                                       baseline=planner_baseline)
        best_list_baseline_boost.append(best_fitness[-1])

    best_list_baseline_boost_only_co = []
    gp_par.keep_baseline = True
    gp_par.boost_baseline = True
    gp_par.boost_baseline_only_co = True
    for i in range(1, n_logs + 1):
        gp_par.log_name = 'test_baseline_boost_only_co' + str(i)
        gp.set_seeds(i)
        _, _, best_fitness, _ = gp.run(environment,
                                       gp_par,
                                       baseline=planner_baseline)
        best_list_baseline_boost_only_co.append(best_fitness[-1])

    print(best_list_baseline_no_keep)
    print(best_list_baseline)
    print(best_list_baseline_boost)
    print(best_list_baseline_boost_only_co)

    print(mean(best_list_baseline_no_keep))
    print(mean(best_list_baseline))
    print(mean(best_list_baseline_boost))
    print(mean(best_list_baseline_boost_only_co))

    assert mean(best_list_baseline_boost) > mean(best_list_baseline)
    assert mean(best_list_baseline_boost_only_co) > mean(
        best_list_baseline_boost)

    #Results after 500 gens run
    #[-51.6, -89.6, -12.2, -2.3, -1.0, -50.2, -51.6, -1.0, -1.0, -1.0]
    #[-12.2, -50.2, -10.8, -1.0, -1.0, -1.0, -2.2999999999999985, -0.9, -50.2, -89.6]
    #[-1.0, -1.0, -1.3, -1.0, -1.0, -1.0, -50.2, -1.0, -1.0, -50.199999999999996]
    #[-1.0, -1.0, -1.1, -1.0, -1.0, -1.2, -1.0, -10.8, -40.3, -1.0]
    #-26.15
    #-21.9
    #-10.87
    #-5.9

    behavior_tree.load_settings_from_file(
        'behavior_tree_learning/tests/BT_TEST_SETTINGS.yaml')
Example #4
0
def test_blocking():
    """ Test scenario of shuffling bricks to avoid blocking """
    gp_par = gp.GpParameters()
    gp_par.ind_start_length = 8
    gp_par.n_population = 16
    gp_par.f_crossover = 0.5
    gp_par.n_offspring_crossover = 2
    gp_par.replace_crossover = False
    gp_par.f_mutation = 0.5
    gp_par.n_offspring_mutation = 2
    gp_par.parent_selection = gp.SelectionMethods.RANK
    gp_par.survivor_selection = gp.SelectionMethods.RANK
    gp_par.f_elites = 0.1
    gp_par.f_parents = gp_par.f_elites
    gp_par.mutate_co_offspring = False
    gp_par.mutate_co_parents = True
    gp_par.mutation_p_add = 0.4
    gp_par.mutation_p_delete = 0.3
    gp_par.allow_identical = False
    gp_par.plot = True
    gp_par.n_generations = 1000
    gp_par.verbose = False
    gp_par.fig_last_gen = False

    behavior_tree.load_settings_from_file(
        'duplo_state_machine/BT_SETTINGS_BLOCKING.yaml')
    planner_baseline = ['s(', 'f(', '0 at pos (-0.1, 0.0, 0.0)?', 'put 0 at (-0.1, 0.0, 0.0)!', ')', \
                    'f(', '1 at pos (-0.1, 0.0, 0.0192)?', \
                          's(', 'f(', '1 on 0?', 'put 1 on 0!', ')', 'apply force 1!', ')', ')', \
                    'f(', '2 at pos (0.0, 0.0, 0.0)?', 'put 2 at (0.0, 0.0, 0.0)!', ')', ')']

    solved = ['s(', 'put 1 on 0!', 'f(', '0 at pos (-0.1, 0.0, 0.0)?', 'put 2 at (0.0, 0.05, 0.0)!', ')', \
                        'put 0 at (-0.1, 0.0, 0.0)!', \
                        'f(', '1 at pos (-0.1, 0.0, 0.0192)?', 'apply force 1!', ')', \
                        'put 2 at (0.0, 0.0, 0.0)!', ')']

    start_positions = []
    start_positions.append(sm.Pos(0.0, -0.05, 0.0))
    start_positions.append(sm.Pos(0.0, 0.05, 0.0))
    start_positions.append(sm.Pos(-0.1, 0.0, 0.0))

    targets = []
    targets.append(Pos(-0.1, 0.0, 0.0))
    targets.append(Pos(-0.1, 0.0, 0.0192))
    targets.append(Pos(0.0, 0.0, 0.0))

    environment = sm_environment.Environment(start_positions,
                                             targets,
                                             verbose=False,
                                             mode=sm.SMMode.BLOCKING)
    fitness = environment.get_fitness(planner_baseline)
    assert fitness < -50

    fitness = environment.get_fitness(solved)
    assert fitness > -2

    gp_par.log_name = 'test_blocking'
    _, _, best_fitness, _ = gp.run(environment,
                                   gp_par,
                                   baseline=planner_baseline)
    assert best_fitness[-1] > -2

    behavior_tree.load_settings_from_file(
        'behavior_tree_learning/tests/BT_TEST_SETTINGS.yaml')