Example #1
0
def ci():
    """
    Used in conjunction with travis for Continuous Integration testing
    :return:
    """
    import django
    sys.path.append(os.path.dirname(__file__))
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings")
    django.setup()
    import base64
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.views import handle_uploaded_file, handle_youtube_video, pull_vdn_list\
        ,import_vdn_dataset_url
    from dvaapp.models import Video, Clusters,IndexEntries,TEvent,VDNServer, DVAPQL
    from django.conf import settings
    from dvaapp.operations.processing import DVAPQLProcess
    from dvaapp.tasks import extract_frames, perform_indexing, export_video, import_video_by_id,\
        perform_clustering, perform_analysis, perform_detection,\
        segment_video, crop_regions_by_id
    for fname in glob.glob('tests/ci/*.mp4'):
        name = fname.split('/')[-1].split('.')[0]
        f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
        handle_uploaded_file(f, name, False)
    if sys.platform != 'darwin':
        for fname in glob.glob('tests/*.mp4'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
            handle_uploaded_file(f, name, False)
        for fname in glob.glob('tests/*.zip'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip")
            handle_uploaded_file(f, name)
    # handle_youtube_video('world is not enough', 'https://www.youtube.com/watch?v=P-oNz3Nf50Q') # Temporarily disabled due error in travis
    for i,v in enumerate(Video.objects.all()):
        if v.dataset:
            arguments = {'sync':True}
            extract_frames(TEvent.objects.create(video=v,arguments=arguments).pk)
        else:
            arguments = {'sync':True}
            segment_video(TEvent.objects.create(video=v,arguments=arguments).pk)
            arguments = {'index': 'inception'}
            perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk)
        if i ==0: # save travis time by just running detection on first video
            # face_mtcnn
            arguments = {'detector': 'face'}
            dt = TEvent.objects.create(video=v,arguments=arguments)
            perform_detection(dt.pk)
            arguments = {'filters':{'event_id':dt.pk},}
            crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk)
            # coco_mobilenet
            arguments = {'detector': 'coco'}
            dt = TEvent.objects.create(video=v, arguments=arguments)
            perform_detection(dt.pk)
            arguments = {'filters':{'event_id':dt.pk},}
            crop_regions_by_id(TEvent.objects.create(video=v,arguments=arguments).pk)
            # inception on crops from detector
            arguments = {'index':'inception','target': 'regions','filters': {'event_id': dt.pk, 'w__gte': 50, 'h__gte': 50}}
            perform_indexing(TEvent.objects.create(video=v,arguments=arguments).pk)
            # assign_open_images_text_tags_by_id(TEvent.objects.create(video=v).pk)
        fname = export_video(TEvent.objects.create(video=v).pk)
        f = SimpleUploadedFile(fname, file("{}/exports/{}".format(settings.MEDIA_ROOT,fname)).read(), content_type="application/zip")
        vimported = handle_uploaded_file(f, fname)
        import_video_by_id(TEvent.objects.create(video=vimported).pk)
    dc = Clusters()
    dc.indexer_algorithm = 'inception'
    dc.included_index_entries_pk = [k.pk for k in IndexEntries.objects.all().filter(algorithm=dc.indexer_algorithm)]
    dc.components = 32
    dc.save()
    clustering_task = TEvent()
    clustering_task.arguments = {'clusters_id':dc.pk}
    clustering_task.operation = 'perform_clustering'
    clustering_task.save()
    perform_clustering(clustering_task.pk)
    query_dict = {
        'process_type': DVAPQL.QUERY,
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexer_queries':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':False
            }
        ]
    }
    qp = DVAPQLProcess()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    query_dict = {
        'process_type': DVAPQL.QUERY,
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexer_queries':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':True
            }
        ]
    }
    qp = DVAPQLProcess()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    server, datasets, detectors = pull_vdn_list(1)
    for k in datasets:
        if k['name'] == 'MSCOCO_Sample_500':
            print 'FOUND MSCOCO SAMPLE'
            import_vdn_dataset_url(VDNServer.objects.get(pk=1),k['url'],None)
    test_backup()
Example #2
0
def ci():
    """
    Used in conjunction with travis for Continuous Integration testing
    :return:
    """
    import django
    sys.path.append(os.path.dirname(__file__))
    os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dva.settings")
    django.setup()
    import base64
    from django.core.files.uploadedfile import SimpleUploadedFile
    from dvaapp.views import handle_uploaded_file, handle_youtube_video, pull_vdn_list\
        ,import_vdn_dataset_url
    from dvaapp.models import Video, Clusters,IndexEntries,TEvent,VDNServer
    from django.conf import settings
    from dvaapp.operations.query_processing import QueryProcessing
    from dvaapp.tasks import extract_frames, perform_indexing, export_video_by_id, import_video_by_id,\
        perform_clustering, perform_analysis, perform_detection,\
        segment_video, crop_regions_by_id
    for fname in glob.glob('tests/ci/*.mp4'):
        name = fname.split('/')[-1].split('.')[0]
        f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
        handle_uploaded_file(f, name, False)
    if sys.platform != 'darwin':
        for fname in glob.glob('tests/*.mp4'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="video/mp4")
            handle_uploaded_file(f, name, False)
        for fname in glob.glob('tests/*.zip'):
            name = fname.split('/')[-1].split('.')[0]
            f = SimpleUploadedFile(fname, file(fname).read(), content_type="application/zip")
            handle_uploaded_file(f, name)
    # handle_youtube_video('world is not enough', 'https://www.youtube.com/watch?v=P-oNz3Nf50Q') # Temporarily disabled due error in travis
    for i,v in enumerate(Video.objects.all()):
        if v.dataset:
            arguments_json = json.dumps({'sync':True})
            extract_frames(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
        else:
            arguments_json = json.dumps({'sync':True})
            segment_video(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
            arguments_json = json.dumps({'index': 'inception'})
            perform_indexing(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
        if i ==0: # save travis time by just running detection on first video
            # face_mtcnn
            arguments_json = json.dumps({'detector': 'face'})
            dt = TEvent.objects.create(video=v,arguments_json=arguments_json)
            perform_detection(dt.pk)
            arguments_json = json.dumps({'filters':{'event_id':dt.pk},})
            crop_regions_by_id(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
            # coco_mobilenet
            arguments_json = json.dumps({'detector': 'coco'})
            dt = TEvent.objects.create(video=v, arguments_json=arguments_json)
            perform_detection(dt.pk)
            arguments_json = json.dumps({'filters':{'event_id':dt.pk},})
            crop_regions_by_id(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
            # inception on crops from detector
            arguments_json = json.dumps({'index':'inception','target': 'regions','filters': {'event_id': dt.pk, 'w__gte': 50, 'h__gte': 50}})
            perform_indexing(TEvent.objects.create(video=v,arguments_json=arguments_json).pk)
            # assign_open_images_text_tags_by_id(TEvent.objects.create(video=v).pk)
        fname = export_video_by_id(TEvent.objects.create(video=v,event_type=TEvent.EXPORT).pk)
        f = SimpleUploadedFile(fname, file("{}/exports/{}".format(settings.MEDIA_ROOT,fname)).read(), content_type="application/zip")
        vimported = handle_uploaded_file(f, fname)
        import_video_by_id(TEvent.objects.create(video=vimported).pk)
    dc = Clusters()
    dc.indexer_algorithm = 'inception'
    dc.included_index_entries_pk = [k.pk for k in IndexEntries.objects.all().filter(algorithm=dc.indexer_algorithm)]
    dc.components = 32
    dc.save()
    clustering_task = TEvent()
    clustering_task.clustering = dc
    clustering_task.event_type = TEvent.CLUSTERING
    clustering_task.operation = 'perform_clustering'
    clustering_task.save()
    perform_clustering(clustering_task.pk)
    query_dict = {
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexers':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':False
            }
        ]
    }
    qp = QueryProcessing()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    query_dict = {
        'image_data_b64':base64.encodestring(file('tests/query.png').read()),
        'indexers':[
            {
                'algorithm':'inception',
                'count':10,
                'approximate':True
            }
        ]
    }
    qp = QueryProcessing()
    qp.create_from_json(query_dict)
    # execute_index_subquery(qp.indexer_queries[0].pk)
    server, datasets, detectors = pull_vdn_list(1)
    for k in datasets:
        if k['name'] == 'MSCOCO_Sample_500':
            print 'FOUND MSCOCO SAMPLE'
            import_vdn_dataset_url(VDNServer.objects.get(pk=1),k['url'],None)
    test_backup()