def run(self, feeds=None): """ Run tensors and dump to summary file. """ self.make() result = ThisSession.run(self.summary_op, feeds) self.file_writer.add_summary(result, ThisSession.run(GlobalStep()))
def main_basic(job, task): cfg = {"worker": ["localhost:2222", "localhost:2223"]} make_distribute_host(cfg, job, task, None, 'worker', 0) master_host = Master.master_host() this_host = ThisHost.host() host1 = Host(job, 1) hmi = DistributeGraphInfo(None, None, None, master_host) with tf.variable_scope('scope_test'): t0 = TensorVariable(VariableInfo(None, [1], tf.float32), hmi.update(name='v0')) aop = tf.assign(t0.data, tf.constant([3.])) t1 = TensorNumpyNDArray([1.0], None, hmi.update(name='v1')) t1c = t1.copy_to(host1) t1p = Tensor(t1c.data + 1, t1c.data_info, t1c.graph_info.update(name='t1_plus')) make_distribute_session() if task == 0: ptensor(t1) Server.join() if task == 1: ptensor(t1) ptensor(t1c) ptensor(t1p) ptensor(t0) ThisSession.run(aop) ptensor(t0)
def bind_local_data_splitted(self, lors): step = 10000 nb_osem = 10 for i in range(nb_osem): self.worker_graphs[self.task_index].tensors['osem_{}'.format( i)] = self.tensor('lorx').assign(lors[i * step:(i + 1) * step, ...]) # when run ThisSession.run()
def train(self, name=None, feeds=None): if name is None: name = 'default' trainer = self.tensors.get(name) if trainer is None: raise ValueError("Nothing to train, please bind first.") ThisSession.run(trainer, feeds) global_step = ThisSession.run(self.global_step.increased()) self.on_step_end(name, global_step)
def run_task(self): KT = self.KEYS.TENSOR KC = self.KEYS.CONFIG ThisSession.run(self.tensors[KT.INIT]) for i in tqdm(range(self.config[KC.NB_ITERATIONS])): ThisSession.run(self.tensors[KT.RECON]) ThisSession.run(self.tensors[KT.MERGE]) if ThisHost.is_master(): x = ThisSession.run(self.tensors[KT.X].data) np.save(f'./result_{i}.npy', x)
def main(job, task): tf.logging.set_verbosity(0) cfg = {"worker": ["localhost:2222", "localhost:2223"]} make_distribute_host(cfg, job, task, None, 'worker', 0) # # if task == 1: # # time.sleep(10) # with tf.device(Master.master_host().device_prefix()): # with tf.variable_scope('test'): # t1 = tf.get_variable('var', [], tf.float32) master_host = Master.master_host() this_host = ThisHost.host() host2 = Host(job, 1) hmi = DistributeGraphInfo(None, None, None, master_host) with tf.variable_scope('scope_test'): t0 = TensorVariable(VariableInfo(None, [1], tf.float32), DistributeGraphInfo.from_(hmi, name='t1')) aop = tf.assign(t0.data, tf.constant([3.])) t1 = TensorNumpyNDArray([1.0], None, DistributeGraphInfo.from_(hmi, name='t1_copy')) t1c = t1.copy_to(host2) t1p = Tensor(t1c.data + 1, t1c.data_info, DistributeGraphInfo.from_(t1c.graph_info, name='t1_plus')) # t2 = t0.copy_to(host2) make_distribute_session() if task == 0: # ThisSession.run(tf.global_variables_initializer()) ptensor(t1) Server.join() if task == 1: ptensor(t1) ptensor(t1c) ptensor(t1p) # print(t2.run()) # print(t2.data) # print(t0.run()) # print(t0) ptensor(t0) print(ThisSession.run(aop)) ptensor(t0)
def test_phase(self): ThisSession.run(self.assign_to_one) yield ThisSession.run(self.assign_to_init)
def run_and_save_if_is_master(self, x, path): if ThisHost.is_master(): if isinstance(x, Tensor): x = x.data result = ThisSession.run(x) np.save(path, result)
def main_sync(job, task): cfg = {"master": ["localhost:2221"], "worker": ["localhost:2222", "localhost:2223"]} make_distribute_host(cfg, job, task, None, 'master', 0) master_host = Master.master_host() this_host = ThisHost.host() host0 = Host('worker', 0) host1 = Host('worker', 1) def sleep(ips): for i in range(5, 0, -1): time.sleep(1) return 0 # hmi = DistributeGraphInfo(None, None, None, master_host) tm = TensorNumpyNDArray([1.0], None, DistributeGraphInfo.from_graph_info(hmi, name='t0')) tcs = [] # t0c = tm.copy_to(host0) # t1c = tm.copy_to(host1) # m_sum = Summation(name='summation', graph_info=DistributeGraphInfo( # 'summation', None, None, host0))([t0c, t1c]) ops = tf.FIFOQueue(2, tf.bool, shapes=[], name='barrier', shared_name='barrier') # ptensor(tm) if ThisHost.host() == master_host: join = ops.dequeue_many(2) else: signal = ops.enqueue(False) no = tf.constant('tmp') ops = [tf.Print(no, data=[no], message='Done_{}'.format(i), name='p_{}'.format(i)) for i in range(3)] # ops.enqueue() make_distribute_session() if ThisHost.host() == master_host: ThisSession.run(join) print('Joined.') time.sleep(2) ThisSession.run(ops[0]) # Server.join() elif ThisHost.host() == host0: ThisSession.run(signal) ThisSession.run(ops[1]) elif ThisHost.host() == host1: time.sleep(3) ThisSession.run(signal) ThisSession.run(ops[2])
def run(self, feeds=None): self.make() result = ThisSession.run(self.summary_op, feeds) self.file_writer.add_summary(result, ThisSession.run(GlobalStep()))
def auto_run(self, feeds=None): if ThisSession.run(GlobalStep()) >= self._next_summary_step: self.run(feeds) self._next_summary_step += self.config( self.KEYS.CONFIG.NB_INTERVAL)
def evaluate(self, name=None, feeds=None): with get_global_context().test_phase(): return ThisSession.run(self.tensors.get(name), feeds)
def run_and_print_if_is_master(self, x): if ThisHost.is_master(): if isinstance(x, Tensor): x = x.data result = ThisSession.run(x) print(result)