Example #1
0
def setup_module(module):
    global tvfcg_plv_ts
    global tvfcg_plv_fcgs
    global tvfcg_pac_plv_fcgs

    original_data = np.load("../examples/data/eeg_32chans_10secs.npy")

    # TVFCGS with PLV
    data = original_data[0:2, 0:1024]
    fb = [1.0, 4.0]
    fs = 128
    estimator = PLV(fb, fs)
    tvfcg_plv_fcgs = tvfcg(data, estimator, fb, fs)

    # TVFCGS with PAC and PLV
    data = original_data[..., 0:1024]
    fb = [1.0, 4.0]
    fs = 128
    f_lo = fb
    f_hi = [20.0, 30.0]
    estimator = PLV(fb, fs)
    pac = PAC(f_lo, f_hi, fs, estimator)
    tvfcg_pac_plv_fcgs = tvfcg_cfc(data, pac, f_lo, f_hi, fs)

    # TVFCGS with PLV (ts)
    fb = [1.0, 4.0]
    fs = 128.0
    estimator = PLV(fb, fs)
    u_phases = estimator.preprocess(data)
    ts, avg = estimator.estimate(u_phases)
    tvfcg_plv_ts = tvfcg_ts(ts, [1.0, 4.0], 128, avg_func=estimator.mean)
Example #2
0
def try_TVFCG(data):
    fb = [1.0, 4.0]
    fs = 128
    pairs = None
    n_jobs = 1
    cc = 2.0
    step = 5

    pli = PLI(fb, fs, pairs)
    fcgs = tvfcg(data, pli, fb, fs, cc, step)

    return fcgs
Example #3
0
    now = time.time()
    ts, avg = plv(data, fb, fs)
    print("Finished in", time.time() - now, "sec")

    # TVFCGs from time seriess
    now = time.time()
    fcgs = tvfcg_ts(ts, [1.0, 4.0], 128)
    print("Finished in", time.time() - now, "sec")

    # TVFCGs
    fb = [1.0, 4.0]
    fs = 128.0

    estimator = PLV(fb, fs)
    fcgs = tvfcg(data, estimator, fb, fs)

    # PAC
    lo = [1.0, 4.0]
    hi = [8.0, 13.0]
    fs = 128.0
    estimator = PLV(fb, fs)

    now = time.time()
    cfc_ts, cfc_avg = pac(data, lo, hi, fs, estimator)
    print("Finished in", time.time() - now, "sec")

    # TVFCGs + PAC
    pac_estimator = PAC(lo, hi, fs, estimator)

    now = time.time()