def simulate(self, xpivot=0.0, spin=10.0, t1=1.5, dt=0.01): # reset self.system.q[:] = 0.0 self.system.qd[:] = 0.0 # initial conditions self.system.q[self.pivot.istrain][0] = xpivot # initial elevation self.system.qd[self.axis.istrain][0] = spin # initial rotation speed # setup integrator #self.integ = Integrator(self.system, ('pos','vel','acc')) self.integ = Integrator(self.system, ()) for istrain in (self.pivot.istrain, self.axis.istrain): self.integ.add_output(dynamics.StrainOutput(istrain, deriv=0)) self.integ.add_output(dynamics.StrainOutput(istrain, deriv=1)) self.integ.add_output(dynamics.StrainOutput(istrain, deriv=2)) self.integ.add_output(dynamics.LoadOutput(self.pivot.idist[0])) self.integ.add_output( dynamics.LoadOutput(self.pivot.idist[0], local=True)) self.integ.add_output(dynamics.LoadOutput(self.body.iprox)) self.integ.add_output(dynamics.LoadOutput(self.endbody.iprox)) self.integ.add_output(dynamics.CustomOutput(self.applied_torque, "Q2")) self.integ.add_output( dynamics.CustomOutput(self.thetadotdot, "thetadotdot")) self.integ.add_output(dynamics.CustomOutput(self.gyro_torque, "Q1")) # simulate if t1 > 0: self.t, self.y = self.integ.integrate(t1, dt)
def simulate(self, qm0, spin=10.0, t1=1.5, dt=0.01): # reset self.system.q[:] = 0.0 self.system.qd[:] = 0.0 # initial conditions self.system.q[self.blade.istrain] = qm0 # initial modal amplitudes self.system.prescribe(self.bearing.istrain, vel=spin, acc=0.0) #acc=spin/t1) # setup integrator self.integ = Integrator(self.system, ('pos', 'vel')) self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox)) self.integ.add_output(dynamics.LoadOutput(self.blade.iprox)) self.integ.add_output(dynamics.LoadOutput(self.blade.iprox, local=True)) self.integ.add_output( dynamics.CustomOutput(lambda s: self.blade.station_positions()[-1], label="Tip pos")) self.integ.add_output( dynamics.CustomOutput(lambda s: self.blade.quad_stress, label="Quad stress")) # simulate self.t, self.y = self.integ.integrate(t1, dt) return self.t, self.y
def simulate(self, xpivot=0.0, vprec=0.0, t1=10, dt=0.05): # reset self.system.q[:] = 0.0 self.system.qd[:] = 0.0 # initial conditions self.system.q[self.pivot.istrain][0] = xpivot # initial elevation self.system.qd[self.bearing.istrain][0] = vprec # initial azimuth spd self.system.qd[ self.axis.istrain][0] = self.spin # initial rotation speed self.integ = Integrator(self.system, ('pos', 'vel')) self.integ.add_output(dynamics.LoadOutput(self.axis.iprox)) self.integ.add_output(dynamics.LoadOutput(self.pivot.iprox)) self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox)) #integ.add_output(dynamics.CustomOutput( # lambda s: np.dot(self.axis.mass_vv, self.system.qdd[el.iprox+el.idist]) + \ # np.dot(el.mass_ve, self.system.qdd[el.istrain]))) # simulate if t1 > 0: self.t, self.y = self.integ.integrate(t1, dt) for i, lab in enumerate(self.integ.labels()): print "%2d %s" % (i, lab) return self.t, self.y
def __init__(self, mode_source_file, root_length=0): # Modal element using data from Bladed model print "Loading modes from '%s'..." % mode_source_file self.modes = ModalRepresentation.from_Bladed(mode_source_file) Ry = rotmat_y(-pi / 2) Rhb1 = rotmat_x(0 * 2 * pi / 3) Rhb2 = rotmat_x(1 * 2 * pi / 3) Rhb3 = rotmat_x(2 * 2 * pi / 3) self.bearing = Hinge('bearing', [1, 0, 0]) root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]), dot(Rhb1, Ry)) root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]), dot(Rhb2, Ry)) root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]), dot(Rhb3, Ry)) self.blade1 = ModalElement('blade1', self.modes) self.blade2 = ModalElement('blade2', self.modes) self.blade3 = ModalElement('blade3', self.modes) self.bearing.add_leaf(root1) self.bearing.add_leaf(root2) self.bearing.add_leaf(root3) root1.add_leaf(self.blade1) root2.add_leaf(self.blade2) root3.add_leaf(self.blade3) self.system = System(self.bearing) # Prescribed DOF accelerations - constant rotor speed self.system.prescribe(self.bearing.istrain, vel=0.0, acc=0.0) # setup integrator self.integ = Integrator(self.system, ('pos', 'vel')) self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output( dynamics.CustomOutput(lambda s: b.station_positions()[-1], label="{} tip defl".format(b))) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output( dynamics.CustomOutput(lambda s: dot(b.Rp, b.station_positions()[-1]), label="{} tip pos".format(b)))
def __init__(self, mode_source_file, root_length=0, wind_table=None): # Modal element using data from Bladed model print "Loading modes from '%s'..." % mode_source_file self.blade = Blade(mode_source_file) self.modes = self.blade.modal_rep() if wind_table is not None: loading = BladeLoading(self.blade, wind_table, None) else: loading = None Ry = rotmat_y(-pi/2) Rhb1 = rotmat_x(0 * 2*pi/3) Rhb2 = rotmat_x(1 * 2*pi/3) Rhb3 = rotmat_x(2 * 2*pi/3) self.bearing = Hinge('bearing', [1,0,0]) root1 = RigidConnection('root1', root_length*np.dot(Rhb1,[0,0,1]), dot(Rhb1,Ry)) root2 = RigidConnection('root2', root_length*np.dot(Rhb2,[0,0,1]), dot(Rhb2,Ry)) root3 = RigidConnection('root3', root_length*np.dot(Rhb3,[0,0,1]), dot(Rhb3,Ry)) self.blade1 = ModalElement('blade1', self.modes, loading) self.blade2 = ModalElement('blade2', self.modes) self.blade3 = ModalElement('blade3', self.modes) self.bearing.add_leaf(root1) self.bearing.add_leaf(root2) self.bearing.add_leaf(root3) root1.add_leaf(self.blade1) root2.add_leaf(self.blade2) root3.add_leaf(self.blade3) self.system = System(self.bearing) # Prescribed DOF accelerations - constant rotor speed self.system.prescribe(self.bearing, vel=0.0, acc=0.0) # setup integrator self.integ = Integrator(self.system, ('pos','vel')) self.integ.add_output(dynamics.LoadOutput(self.bearing.iprox)) self.integ.add_output(dynamics.LoadOutput(self.blade1.iprox, local=True)) self.integ.add_output(self.blade1.output_deflections()) self.integ.add_output(self.blade1.output_positions())
def init(self, rotspeed, ip0, oop0): # reset self.system.q[:] = 0.0 self.system.qd[:] = 0.0 # initial conditions self.system.qd[self.beam.istrain] = [ip0, oop0] # initial OOP angle # prescribed values self.system.prescribe(self.bearing.istrain, vel=rotspeed, acc=0.0) # constant rotational speed # setup integrator self.integ = Integrator(self.system, ('pos', 'vel')) self.integ.add_output(dynamics.LoadOutput(self.beam.iprox, local=True))
# Modal element base = RigidConnection('base', rotation=rotmat_y(-np.pi / 2)) el = ModalElement('el', modes, distal=True, damping_freqs=[8.269, 10.248]) rna = RigidBody('rna', 24000, np.diag([6400003, 6400003, 4266667]), nodal_load=loadfunc) base.add_leaf(el) el.add_leaf(rna) system = System(base) integ = Integrator(system) integ.add_output(el.output_deflections()) integ.add_output(el.output_rotations()) integ.add_output(dynamics.LoadOutput(rna.iprox)) linsys = LinearisedSystem(system) def ani_xy(s, t, y): return dynvis.anim(s, t, y, (0, 1), (-5, 45), (-5, 5), velocities=False) def ani_xz(s, t, y): return dynvis.anim(s, t, y, (0, 2), (-5, 45), (-5, 5), velocities=False) def ani_yz(s, t, y): return dynvis.anim(s, t,
el1 = ModalElement('el', modes, distal=False) system1 = System(el1) el2 = ModalElement('el', modes, distal=True) body = RigidBody('body', endmass, inertia=endinertia * np.eye(3)) el2.add_leaf(body) system2 = System(el2) integ1 = Integrator(system1) integ1.add_output(el1.output_positions()) integ2 = Integrator(system2, outputs=('pos', 'vel', 'acc')) integ2.add_output(el2.output_positions()) integ2.add_output(dynamics.NodeOutput(body.iprox)) integ2.add_output(dynamics.NodeOutput(body.iprox, deriv=2)) integ2.add_output(dynamics.LoadOutput(body.iprox)) integ2.add_output(dynamics.StrainOutput(el2.imult)) if False: t, y1 = integ1.integrate(20, 0.05) t, y2 = integ2.integrate(20, 0.05) def p(): fig = plt.figure() ax = fig.add_subplot(311) ax.plot(t, y2[3][:, 2], 'b-', label='With end mass') ax.plot(t, y1[1][:, 2], 'k--', label='Just beam') ax.set_ylabel('Z tip defl') ax = fig.add_subplot(312)
def __init__(self, bladed_file, root_length=0, rigid=False): # Modal element using data from Bladed model print "Loading modes from '%s'..." % bladed_file self.blade = Blade(bladed_file) self.tower = Tower(bladed_file) self.modes = self.blade.modal_rep() Ry = rotmat_y(-pi / 2) Rhb1 = rotmat_x(0 * 2 * pi / 3) Rhb2 = rotmat_x(1 * 2 * pi / 3) Rhb3 = rotmat_x(2 * 2 * pi / 3) self.base = FreeJoint('base') self.towerlink = RigidConnection('tower', [0, 0, self.tower.hubheight]) self.bearing = Hinge('bearing', [1, 0, 0]) root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]), dot(Rhb1, Ry)) root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]), dot(Rhb2, Ry)) root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]), dot(Rhb3, Ry)) self.blade1 = ModalElement('blade1', self.modes) self.blade2 = ModalElement('blade2', self.modes) self.blade3 = ModalElement('blade3', self.modes) self.base.add_leaf(self.towerlink) self.towerlink.add_leaf(self.bearing) self.bearing.add_leaf(root1) self.bearing.add_leaf(root2) self.bearing.add_leaf(root3) root1.add_leaf(self.blade1) root2.add_leaf(self.blade2) root3.add_leaf(self.blade3) self.system = System(self.base) # Prescribed DOF accelerations - constant rotor speed self.base_motion = None self.base_motion_amp = 0 self.system.prescribe(self.bearing, vel=0) self.system.prescribe(self.base, vel=0) if rigid: for b in (self.blade1, self.blade2, self.blade3): self.system.prescribe(b, vel=0) # setup integrator self.integ = Integrator(self.system, ('pos', 'vel', 'acc')) self.integ.add_output(dynamics.LoadOutput(self.base.iprox)) self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox)) self.integ.add_output( dynamics.LoadOutput(self.bearing.iprox, local=True)) self.integ.add_output( dynamics.LoadOutput(self.bearing.idist[0], local=True)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output(b.output_deflections()) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output(b.output_positions()) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output( dynamics.NodeOutput(b.iprox, local=True, deriv=2))
def __init__(self, bladed_file, root_length=0): # Load modes but use a simple flapped blade print "Loading modes from '%s'..." % bladed_file self.blade = Blade(bladed_file) self.tower = Tower(bladed_file) self.modes = self.blade.modal_rep() # Calculate equivalent blade properties I1 = self.modes.I0[0] I2 = self.modes.J0[0, 0] print I1, I2 wflap = self.modes.freqs[0] bmass = self.modes.mass inertia = self.modes.inertia_tensor(np.zeros(len(self.modes.freqs))) Xc = [I1 / bmass, 0, 0] kflap = I2 * wflap**2 Ry = rotmat_y(-pi / 2) Rhb1 = rotmat_x(0 * 2 * pi / 3) Rhb2 = rotmat_x(1 * 2 * pi / 3) Rhb3 = rotmat_x(2 * 2 * pi / 3) self.base = FreeJoint('base') self.towerlink = RigidConnection('tower', [0, 0, self.tower.hubheight]) self.bearing = Hinge('bearing', [1, 0, 0]) root1 = RigidConnection('root1', root_length * np.dot(Rhb1, [0, 0, 1]), dot(Rhb1, Ry)) root2 = RigidConnection('root2', root_length * np.dot(Rhb2, [0, 0, 1]), dot(Rhb2, Ry)) root3 = RigidConnection('root3', root_length * np.dot(Rhb3, [0, 0, 1]), dot(Rhb3, Ry)) self.flap1 = Hinge('flap1', [0, 1, 0]) self.flap2 = Hinge('flap2', [0, 1, 0]) self.flap3 = Hinge('flap3', [0, 1, 0]) self.blade1 = RigidBody('blade1', bmass, inertia, Xc) self.blade2 = RigidBody('blade2', bmass, inertia, Xc) self.blade3 = RigidBody('blade3', bmass, inertia, Xc) self.flap1.stiffness = self.flap2.stiffness = self.flap3.stiffness = kflap self.base.add_leaf(self.towerlink) self.towerlink.add_leaf(self.bearing) self.bearing.add_leaf(root1) self.bearing.add_leaf(root2) self.bearing.add_leaf(root3) root1.add_leaf(self.flap1) root2.add_leaf(self.flap2) root3.add_leaf(self.flap3) self.flap1.add_leaf(self.blade1) self.flap2.add_leaf(self.blade2) self.flap3.add_leaf(self.blade3) self.system = System(self.base) # Prescribed DOF accelerations - constant rotor speed self.base_motion = None self.base_motion_amp = 0 self.system.prescribe(self.bearing, vel=0) self.system.prescribe(self.base, vel=0) # setup integrator self.integ = Integrator(self.system, ('pos', 'vel', 'acc')) self.integ.add_output(dynamics.LoadOutput(self.base.iprox)) self.integ.add_output(dynamics.LoadOutput(self.towerlink.iprox)) self.integ.add_output( dynamics.LoadOutput(self.bearing.iprox, local=True)) self.integ.add_output( dynamics.LoadOutput(self.bearing.idist[0], local=True)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output(dynamics.LoadOutput(b.iprox, local=True)) for b in (self.blade1, self.blade2, self.blade3): self.integ.add_output( dynamics.NodeOutput(b.iprox, local=True, deriv=2))