def __init__(self, X=None, V=None, Grid=None, *args, **kwargs): self.norm_dict = {} if X is not None and V is not None: self.parameters = update_n_merge_dict(kwargs, { "X": X, "V": V, "Grid": Grid }) import tempfile from dynode.vectorfield import networkModels from dynode.vectorfield.samplers import VelocityDataSampler from dynode.vectorfield.losses_weighted import ( MSE, ) # MAD, BinomialChannel, WassersteinDistance, CosineDistance good_ind = np.where(~np.isnan(V.sum(1)))[0] good_V = V[good_ind, :] good_X = X[good_ind, :] self.valid_ind = good_ind velocity_data_sampler = VelocityDataSampler( adata={ "X": good_X, "V": good_V }, normalize_velocity=kwargs.get("normalize_velocity", False), ) vf_kwargs = { "X": X, "V": V, "Grid": Grid, "model": networkModels, "sirens": False, "enforce_positivity": False, "velocity_data_sampler": velocity_data_sampler, "time_course_data_sampler": None, "network_dim": X.shape[1], "velocity_loss_function": MSE(), # CosineDistance(), # #MSE(), MAD() "time_course_loss_function": None, # BinomialChannel(p=0.1, alpha=1) "velocity_x_initialize": X, "time_course_x0_initialize": None, "smoothing_factor": None, "stability_factor": None, "load_model_from_buffer": False, "buffer_path": tempfile.mkdtemp(), "hidden_features": 256, "hidden_layers": 3, "first_omega_0": 30.0, "hidden_omega_0": 30.0, } vf_kwargs = update_dict(vf_kwargs, self.parameters) super().__init__(**vf_kwargs)
def VectorField( adata: anndata.AnnData, basis: Union[None, str] = None, layer: str = "X", dims: Union[int, list, None] = None, genes: Union[list, None] = None, normalize: bool = False, grid_velocity: bool = False, grid_num: int = 50, velocity_key: str = "velocity_S", method: str = "SparseVFC", model_buffer_path: Union[str, None] = None, return_vf_object: bool = False, map_topography: bool = True, pot_curl_div: bool = False, cores: int = 1, copy: bool = False, **kwargs, ) -> Union[anndata.AnnData, base_vectorfield]: """Learn a function of high dimensional vector field from sparse single cell samples in the entire space robustly. Parameters ---------- adata: AnnData object that contains embedding and velocity data basis: The embedding data to use. The vector field function will be learned on the low dimensional embedding and can be then projected back to the high dimensional space. layer: Which layer of the data will be used for vector field function reconstruction. The layer once provided, will override the `basis` argument and then learn the vector field function in high dimensional space. dims: The dimensions that will be used for reconstructing vector field functions. If it is an `int` all dimension from the first dimension to `dims` will be used; if it is a list, the dimensions in the list will be used. genes: The gene names whose gene expression will be used for vector field reconstruction. By default (when genes is set to None), the genes used for velocity embedding (var.use_for_transition) will be used for vector field reconstruction. Note that the genes to be used need to have velocity calculated. normalize: Logic flag to determine whether to normalize the data to have zero means and unit covariance. This is often required for raw dataset (for example, raw UMI counts and RNA velocity values in high dimension). But it is normally not required for low dimensional embeddings by PCA or other non-linear dimension reduction methods. grid_velocity: Whether to generate grid velocity. Note that by default it is set to be False, but for datasets with embedding dimension less than 4, the grid velocity will still be generated. Please note that number of total grids in the space increases exponentially as the number of dimensions increases. So it may quickly lead to lack of memory, for example, it cannot allocate the array with grid_num set to be 50 and dimension is 6 (50^6 total grids) on 32 G memory computer. Although grid velocity may not be generated, the vector field function can still be learned for thousands of dimensions and we can still predict the transcriptomic cell states over long time period. grid_num: The number of grids in each dimension for generating the grid velocity. velocity_key: The key from the adata layer that corresponds to the velocity matrix. method: Method that is used to reconstruct the vector field functionally. Currently only SparseVFC supported but other improved approaches are under development. buffer_path: The directory address keeping all the saved/to-be-saved torch variables and NN modules. When `method` is set to be `dynode`, buffer_path will set to be return_vf_object: Whether or not to include an instance of a vectorfield class in the the `VecFld` dictionary in the `uns` attribute. map_topography: Whether to quantify the topography of the 2D vector field. pot_curl_div: Whether to calculate potential, curl or divergence for each cell. Potential can be calculated for any basis while curl and divergence is by default only applied to 2D basis. However, divergence is applicable for any dimension while curl is generally only defined for 2/3 D systems. cores: Number of cores to run the ddhodge function. If cores is set to be > 1, multiprocessing will be used to parallel the ddhodge calculation. copy: Whether to return a new deep copy of `adata` instead of updating `adata` object passed in arguments and returning `None`. kwargs: Other additional parameters passed to the vectorfield class. Returns ------- adata: :class:`Union[anndata.AnnData, base_vectorfield]` If `copy` and `return_vf_object` arguments are set to False, `annData` object is updated with the `VecFld` dictionary in the `uns` attribute. If `return_vf_object` is set to True, then a vector field class object is returned. If `copy` is set to True, a deep copy of the original `adata` object is returned. """ logger = LoggerManager.get_logger("dynamo-topography") logger.info("vectorfield calculation begins...", indent_level=1) logger.log_time() if copy: logger.info( "Deep copying AnnData object and working on the new copy. Original AnnData object will not be modified.", indent_level=1, ) adata = adata.copy() if basis is not None: logger.info("Retrieve X and V based on basis: %s. \n " " Vector field will be learned in the %s space." % (basis.upper(), basis.upper())) X = adata.obsm["X_" + basis].copy() V = adata.obsm["velocity_" + basis].copy() if np.isscalar(dims): X, V = X[:, :dims], V[:, :dims] elif type(dims) is list: X, V = X[:, dims], V[:, dims] else: logger.info( "Retrieve X and V based on `genes`, layer: %s. \n " " Vector field will be learned in the gene expression space." % layer) valid_genes = (list(set(genes).intersection(adata.var.index)) if genes is not None else adata.var_names[adata.var.use_for_transition]) if layer == "X": X = adata[:, valid_genes].X.copy() X = np.expm1(X) else: X = inverse_norm(adata, adata.layers[layer]) V = adata[:, valid_genes].layers[velocity_key].copy() if sp.issparse(X): X, V = X.A, V.A Grid = None if X.shape[1] < 4 or grid_velocity: logger.info( "Generating high dimensional grids and convert into a row matrix.") # smart way for generating high dimensional grids and convert into a row matrix min_vec, max_vec = ( X.min(0), X.max(0), ) min_vec = min_vec - 0.01 * np.abs(max_vec - min_vec) max_vec = max_vec + 0.01 * np.abs(max_vec - min_vec) Grid_list = np.meshgrid( *[np.linspace(i, j, grid_num) for i, j in zip(min_vec, max_vec)]) Grid = np.array([i.flatten() for i in Grid_list]).T if X is None: raise Exception( f"X is None. Make sure you passed the correct X or {basis} dimension reduction method." ) elif V is None: raise Exception("V is None. Make sure you passed the correct V.") logger.info("Learning vector field with method: %s." % (method.lower())) if method.lower() == "sparsevfc": vf_kwargs = { "M": None, "a": 5, "beta": None, "ecr": 1e-5, "gamma": 0.9, "lambda_": 3, "minP": 1e-5, "MaxIter": 30, "theta": 0.75, "div_cur_free_kernels": False, "velocity_based_sampling": True, "sigma": 0.8, "eta": 0.5, "seed": 0, } elif method.lower() == "dynode": try: import dynode from dynode.vectorfield import networkModels from dynode.vectorfield.samplers import VelocityDataSampler # from dynode.vectorfield.losses_weighted import MAD, BinomialChannel, WassersteinDistance, CosineDistance from dynode.vectorfield.losses_weighted import MSE from .scVectorField import dynode_vectorfield except ImportError: raise ImportError("You need to install the package `dynode`." "install dynode via `pip install dynode`") velocity_data_sampler = VelocityDataSampler( adata={ "X": X, "V": V }, normalize_velocity=normalize) max_iter = 2 * 100000 * np.log(X.shape[0]) / (250 + np.log(X.shape[0])) cwd, cwt = os.getcwd(), datetime.datetime.now() if model_buffer_path is None: model_buffer_path = cwd + "/" + basis + "_" + str( cwt.year) + "_" + str(cwt.month) + "_" + str(cwt.day) warnings.warn(f"the buffer path saving the dynode model is in %s" % (model_buffer_path)) vf_kwargs = { "model": networkModels, "sirens": False, "enforce_positivity": False, "velocity_data_sampler": velocity_data_sampler, "time_course_data_sampler": None, "network_dim": X.shape[1], "velocity_loss_function": MSE(), # CosineDistance(), # #MSE(), MAD() # BinomialChannel(p=0.1, alpha=1) "time_course_loss_function": None, "velocity_x_initialize": X, "time_course_x0_initialize": None, "smoothing_factor": None, "stability_factor": None, "load_model_from_buffer": False, "buffer_path": model_buffer_path, "hidden_features": 256, "hidden_layers": 3, "first_omega_0": 30.0, "hidden_omega_0": 30.0, } train_kwargs = { "max_iter": int(max_iter), "velocity_batch_size": 50, "time_course_batch_size": 100, "autoencoder_batch_size": 50, "velocity_lr": 1e-4, "velocity_x_lr": 0, "time_course_lr": 1e-4, "time_course_x0_lr": 1e4, "autoencoder_lr": 1e-4, "velocity_sample_fraction": 1, "time_course_sample_fraction": 1, "iter_per_sample_update": None, } else: raise ValueError( f"current only support two methods, SparseVFC and dynode") vf_kwargs = update_dict(vf_kwargs, kwargs) if method.lower() == "sparsevfc": VecFld = svc_vectorfield(X, V, Grid, **vf_kwargs) vf_dict = VecFld.train(normalize=normalize, **kwargs) elif method.lower() == "dynode": train_kwargs = update_dict(train_kwargs, kwargs) VecFld = dynode_vectorfield(X, V, Grid, **vf_kwargs) # {"VecFld": VecFld.train(**kwargs)} vf_dict = VecFld.train(**train_kwargs) vf_key = "VecFld" if basis is None else "VecFld_" + basis vf_dict["method"] = method if basis is not None: key = "velocity_" + basis + "_" + method X_copy_key = "X_" + basis + "_" + method logger.info_insert_adata(key, adata_attr="obsm") logger.info_insert_adata(X_copy_key, adata_attr="obsm") adata.obsm[key] = vf_dict["V"] adata.obsm[X_copy_key] = vf_dict["X"] vf_dict["dims"] = dims logger.info_insert_adata(vf_key, adata_attr="uns") adata.uns[vf_key] = vf_dict else: key = velocity_key + "_" + method logger.info_insert_adata(key, adata_attr="layers") adata.layers[key] = sp.csr_matrix((adata.shape)) adata.layers[key][:, valid_genes] = vf_dict["V"] vf_dict["layer"] = layer vf_dict["genes"] = genes vf_dict["velocity_key"] = velocity_key logger.info_insert_adata(vf_key, adata_attr="uns") adata.uns[vf_key] = vf_dict if X.shape[1] == 2 and map_topography: tp_kwargs = {"n": 25} tp_kwargs = update_dict(tp_kwargs, kwargs) logger.info("Mapping topography...") with warnings.catch_warnings(): warnings.simplefilter("ignore") adata = topography(adata, basis=basis, X=X, layer=layer, dims=[0, 1], VecFld=vf_dict, **tp_kwargs) if pot_curl_div: if basis in ["pca", "umap", "tsne", "diffusion_map", "trimap"]: logger.info( "Running ddhodge to estimate vector field based pseudotime...") ddhodge(adata, basis=basis, cores=cores) if X.shape[1] == 2: logger.info("Computing curl...") curl(adata, basis=basis) logger.info("Computing divergence...") divergence(adata, basis=basis) control_point, inlier_prob, valid_ids = ( "control_point_" + basis if basis is not None else "control_point", "inlier_prob_" + basis if basis is not None else "inlier_prob", vf_dict["valid_ind"], ) if method.lower() == "sparsevfc": logger.info_insert_adata(control_point, adata_attr="obs") logger.info_insert_adata(inlier_prob, adata_attr="obs") adata.obs[control_point], adata.obs[inlier_prob] = False, np.nan adata.obs.loc[adata.obs_names[vf_dict["ctrl_idx"]], control_point] = True adata.obs.loc[adata.obs_names[valid_ids], inlier_prob] = vf_dict["P"].flatten() # angles between observed velocity and that predicted by vector field across cells: cell_angels = np.zeros(adata.n_obs) for i, u, v in zip(valid_ids, V[valid_ids], vf_dict["V"]): cell_angels[i] = angle(u, v) if basis is not None: temp_key = "obs_vf_angle_" + basis logger.info_insert_adata(temp_key, adata_attr="obs") adata.obs[temp_key] = cell_angels else: temp_key = "obs_vf_angle" logger.info_insert_adata(temp_key, adata_attr="obs") adata.obs[temp_key] = cell_angels logger.finish_progress("VectorField") if return_vf_object: return VecFld elif copy: return adata return None