Example #1
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.gspace = Rot2dOnR2(4)
        self.input_type = FieldType(self.gspace, 3*[self.gspace.trivial_repr]) 

        self.small_type = FieldType(self.gspace, 4*[self.gspace.regular_repr])
        self.mid_type = FieldType(self.gspace, 16*[self.gspace.regular_repr])

        self.model = nn.Sequential(
            R2Conv(self.input_type, self.small_type, kernel_size=3, padding=1, bias=False),
            InnerBatchNorm(self.small_type),
            ReLU(self.small_type),

            R2Conv(self.small_type, self.small_type, kernel_size=3, padding=1, bias=False),
            InnerBatchNorm(self.small_type),
            ReLU(self.small_type),

            R2Conv(self.small_type, self.small_type, kernel_size=3, padding=1, bias=False),
            InnerBatchNorm(self.small_type),
            ReLU(self.small_type),

            R2Conv(self.small_type, self.mid_type, kernel_size=3, padding=1, bias=False),
            InnerBatchNorm(self.mid_type),
            ReLU(self.mid_type),

            R2Conv(self.mid_type, self.small_type, kernel_size=3, padding=1, bias=False),
            InnerBatchNorm(self.small_type),
            ReLU(self.small_type),
        )

        self.pool = GroupPooling(self.small_type)
        pool_out = self.pool.out_type.size
        self.final = nn.Conv2d(pool_out, 1, kernel_size=3, padding=1)
Example #2
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.gspace = Rot2dOnR2(-1, maximum_frequency=2)
        self.input_type = FieldType(self.gspace, 3*[self.gspace.trivial_repr]) 

        self.small_type = FieldType(self.gspace, 4*list(self.gspace.irreps.values()))
        self.mid_type = FieldType(self.gspace, 16*list(self.gspace.irreps.values()))

        self.model = nn.Sequential(
            R2Conv(self.input_type, self.small_type, kernel_size=3, padding=1, bias=False),
            GNormBatchNorm(self.small_type),
            NormNonLinearity(self.small_type),

            R2Conv(self.small_type, self.small_type, kernel_size=3, padding=1, bias=False),
            GNormBatchNorm(self.small_type),
            NormNonLinearity(self.small_type),
            
            R2Conv(self.small_type, self.small_type, kernel_size=3, padding=1, bias=False),
            GNormBatchNorm(self.small_type),
            NormNonLinearity(self.small_type),

            R2Conv(self.small_type, self.mid_type, kernel_size=3, padding=1, bias=False),
            GNormBatchNorm(self.mid_type),
            NormNonLinearity(self.mid_type),

            R2Conv(self.mid_type, self.small_type, kernel_size=3, padding=1, bias=False),
            GNormBatchNorm(self.small_type),
            NormNonLinearity(self.small_type),
        )

        self.pool = NormPool(self.small_type)
        pool_out = self.pool.out_type.size
        self.final = nn.Conv2d(pool_out, 1, kernel_size=3, padding=1)
Example #3
0
 def get_bottleneck(self, name='bottleneck'):
     feat_type, _ = self.features[name]
     return nn.Sequential(
         OrderedDict({
             f'{name}-conv1':
             R2Conv(feat_type,
                    feat_type,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn1':
             GNormBatchNorm(feat_type),
             f'{name}-relu1':
             NormNonLinearity(feat_type, bias=False),
             f'{name}-conv2':
             R2Conv(feat_type,
                    feat_type,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn2':
             GNormBatchNorm(feat_type),
             f'{name}-relu2':
             NormNonLinearity(feat_type, bias=False),
         }))
Example #4
0
 def get_encoder(self, name):
     feat_type_in, feat_type_out = self.features[name]
     return nn.Sequential(
         OrderedDict({
             f'{name}-conv1':
             R2Conv(feat_type_in,
                    feat_type_out,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    bias=False),
             f'{name}-bn1':
             GNormBatchNorm(feat_type_out),
             f'{name}-relu1':
             NormNonLinearity(feat_type_out, bias=False),
             f'{name}-conv2':
             R2Conv(feat_type_out,
                    feat_type_out,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn2':
             GNormBatchNorm(feat_type_out),
             f'{name}-relu2':
             NormNonLinearity(feat_type_out, bias=False)
         }))
Example #5
0
 def get_encoder(self, name):
     feat_type_in, feat_type_out = self.features[name]
     return nn.Sequential(
         OrderedDict({
             f'{name}-conv1':
             R2Conv(feat_type_in,
                    feat_type_out,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    bias=False),
             f'{name}-bn1':
             InnerBatchNorm(feat_type_out),
             f'{name}-relu1':
             ReLU(feat_type_out, inplace=True),
             #             f'{name}-maxpool': PointwiseMaxPool(feat_type_out, kernel_size=3, stride=2, padding=1),
             f'{name}-conv2':
             R2Conv(feat_type_out,
                    feat_type_out,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn2':
             InnerBatchNorm(feat_type_out),
             f'{name}-relu2':
             ReLU(feat_type_out, inplace=True),
         }))
Example #6
0
 def get_bottleneck(self, name='bottleneck'):
     feat_type, _ = self.features[name]
     return nn.Sequential(
         OrderedDict({
             f'{name}-conv1':
             R2Conv(feat_type,
                    feat_type,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn1':
             InnerBatchNorm(feat_type),
             f'{name}-relu1':
             ReLU(feat_type, inplace=True),
             f'{name}-conv2':
             R2Conv(feat_type,
                    feat_type,
                    kernel_size=3,
                    padding=1,
                    bias=False),
             f'{name}-bn2':
             InnerBatchNorm(feat_type),
             f'{name}-relu2':
             ReLU(feat_type, inplace=True),
         }))
Example #7
0
 def get_decoder(self, name):
     feat_type_in, feat_type_out = self.features[name]
     return nn.Sequential(
         OrderedDict({
             f'{name}-deconv1':
             R2ConvTransposed(feat_type_in,
                              feat_type_out,
                              kernel_size=3,
                              stride=2,
                              output_padding=1,
                              bias=False),
             #             f'{name}-upsample': R2Upsampling(feat_type_in, scale_factor=2),
             #             f'{name}-conv1': R2Conv(feat_type_in, feat_type_out, kernel_size=3, padding=1, bias=False),
             f'{name}-bn1':
             InnerBatchNorm(feat_type_out),
             f'{name}-relu1':
             ReLU(feat_type_out, inplace=True),
             f'{name}-conv2':
             R2Conv(feat_type_out, feat_type_out, kernel_size=3,
                    bias=False),
             #             f'{name}-conv2': R2Conv(feat_type_out, feat_type_out, kernel_size=3, padding=1, bias=False),
             f'{name}-bn2':
             InnerBatchNorm(feat_type_out),
             f'{name}-relu2':
             ReLU(feat_type_out, inplace=True),
         }))
Example #8
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.gspace = Rot2dOnR2(-1, maximum_frequency=2)
        self.input_type = FieldType(self.gspace, 3*[self.gspace.trivial_repr]) 

        layers = []

        irreps = [ v for k, v in self.gspace.irreps.items() if k != self.gspace.trivial_repr.name]

        trivials = FieldType(self.gspace, [self.gspace.trivial_repr]*10)
        gates = FieldType(self.gspace, len(irreps) * [self.gspace.trivial_repr]*10)
        gated = FieldType(self.gspace, irreps*10).sorted()
        gate = gates + gated

        self.small_type = trivials + gate

        layers.append(
            R2Conv(self.input_type, self.small_type, kernel_size=3, padding=1, bias=False)
        )
        layers.append( 
            MultipleModule(layers[-1].out_type,
            labels=[
                 *(["trivial"] * (len(trivials) + len(gates)) + ["gated"] * len(gated))
            ],
            modules=[
                (InnerBatchNorm(trivials + gates), 'trivial'),
                (NormBatchNorm(gated), 'gated')
            ])
        )
        layers.append(
            MultipleModule(layers[-1].out_type,
            labels=[
                *(["trivial"] * len(trivials) + ["gate"] * len(gate))
            ], 
            modules=[
                (ReLU(trivials), 'trivial'),
                (GatedNonLinearity1(gate), 'gate')
            ])

        )

        self.model = nn.Sequential(*layers)

        self.pool = NormPool(layers[-1].out_type)
        pool_out = self.pool.out_type.size
        self.final = nn.Conv2d(pool_out, 1, kernel_size=3, padding=1)