def train(args): '''Run training''' # seed setting torch.manual_seed(args.seed) # debug mode setting # 0 would be fastest, but 1 seems to be reasonable # by considering reproducability # revmoe type check if args.debugmode < 2: chainer.config.type_check = False logging.info('torch type check is disabled') # use determinisitic computation or not if args.debugmode < 1: torch.backends.cudnn.deterministic = False logging.info('torch cudnn deterministic is disabled') else: torch.backends.cudnn.deterministic = True # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) # TODO(nelson) remove in future if 'input' not in valid_json[utts[0]]: logging.error("input file format (json) is modified, please redo" "stage 2: Dictionary and Json Data Preparation") sys.exit(1) idim = int(valid_json[utts[0]]['input'][0]['shape'][1]) odim = int(valid_json[utts[0]]['output'][0]['shape'][1]) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify attention, CTC, hybrid mode if args.mtlalpha == 1.0: mtl_mode = 'ctc' logging.info('Pure CTC mode') elif args.mtlalpha == 0.0: mtl_mode = 'att' logging.info('Pure attention mode') else: mtl_mode = 'mtl' logging.info('Multitask learning mode') # specify model architecture e2e = E2E(idim, odim, args) model = Loss(e2e, args.mtlalpha) # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.conf' with open(model_conf, 'wb') as f: logging.info('writing a model config file to' + model_conf) # TODO(watanabe) use others than pickle, possibly json, and save as a text pickle.dump((idim, odim, args), f) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) # Set gpu reporter = model.reporter ngpu = args.ngpu if ngpu == 1: gpu_id = range(ngpu) logging.info('gpu id: ' + str(gpu_id)) model.cuda() elif ngpu > 1: gpu_id = range(ngpu) logging.info('gpu id: ' + str(gpu_id)) model = DataParallel(model, device_ids=gpu_id) model.cuda() logging.info('batch size is automatically increased (%d -> %d)' % (args.batch_size, args.batch_size * args.ngpu)) args.batch_size *= args.ngpu else: gpu_id = [-1] # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters()) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # read json data with open(args.train_json, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_json, 'rb') as f: valid_json = json.load(f)['utts'] # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) # hack to make batchsze argument as 1 # actual bathsize is included in a list train_iter = chainer.iterators.SerialIterator(train, 1) valid_iter = chainer.iterators.SerialIterator(valid, 1, repeat=False, shuffle=False) # converter choice converter = converter_kaldi if args.input_tensor: converter = converter_tensor # Set up a trainer updater = PytorchSeqUpdaterKaldi(model, args.grad_clip, train_iter, optimizer, converter=converter, device=gpu_id) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: chainer.serializers.load_npz(args.resume, trainer) if ngpu > 1: model.module.load_state_dict( torch.load(args.outdir + '/model.acc.best')) else: model.load_state_dict(torch.load(args.outdir + '/model.acc.best')) model = trainer.updater.model # Evaluate the model with the test dataset for each epoch trainer.extend( PytorchSeqEvaluaterKaldi(model, valid_iter, reporter, converter=converter, device=gpu_id)) # Save attention weight each epoch if args.num_save_attention > 0 and args.mtlalpha != 1.0: data = sorted(list(valid_json.items())[:args.num_save_attention], key=lambda x: int(x[1]['input'][0]['shape'][1]), reverse=True) data = converter([data], device=gpu_id) trainer.extend(PlotAttentionReport(model, data, args.outdir + "/att_ws"), trigger=(1, 'epoch')) # Make a plot for training and validation values trainer.extend( extensions.PlotReport([ 'main/loss', 'validation/main/loss', 'main/loss_ctc', 'validation/main/loss_ctc', 'main/loss_att', 'validation/main/loss_att' ], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) # Save best models def torch_save(path, _): if ngpu > 1: torch.save(model.module.state_dict(), path) torch.save(model.module, path + ".pkl") else: torch.save(model.state_dict(), path) torch.save(model, path + ".pkl") trainer.extend( extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save), trigger=training.triggers.MinValueTrigger('validation/main/loss')) # save the model after each epoch trainer.extend(extensions.snapshot_object(model, 'model_epoch{.updater.epoch}', savefun=torch_save), trigger=(1, 'epoch')) if mtl_mode is not 'ctc': trainer.extend( extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # epsilon decay in the optimizer def torch_load(path, obj): if ngpu > 1: model.module.load_state_dict(torch.load(path)) else: model.load_state_dict(torch.load(path)) return obj if args.opt == 'adadelta': if args.criterion == 'acc' and mtl_mode is not 'ctc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=(100, 'iteration'))) report_keys = [ 'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att', 'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att', 'main/acc', 'validation/main/acc', 'elapsed_time' ] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["eps"]), trigger=(100, 'iteration')) report_keys.append('eps') trainer.extend(extensions.PrintReport(report_keys), trigger=(100, 'iteration')) trainer.extend(extensions.ProgressBar()) # Run the training trainer.run()
def main(): parser = argparse.ArgumentParser() # general configuration parser.add_argument('--gpu', '-g', default='-1', type=str, help='GPU ID (negative value indicates CPU)') parser.add_argument('--outdir', type=str, required=True, help='Output directory') parser.add_argument('--debugmode', default=1, type=int, help='Debugmode') parser.add_argument('--dict', required=True, help='Dictionary') parser.add_argument('--seed', default=1, type=int, help='Random seed') parser.add_argument('--debugdir', type=str, help='Output directory for debugging') parser.add_argument('--resume', '-r', default='', help='Resume the training from snapshot') parser.add_argument('--minibatches', '-N', type=int, default='-1', help='Process only N minibatches (for debug)') parser.add_argument('--verbose', '-V', default=0, type=int, help='Verbose option') # task related parser.add_argument('--train-feat', type=str, required=True, help='Filename of train feature data (Kaldi scp)') parser.add_argument('--valid-feat', type=str, required=True, help='Filename of validation feature data (Kaldi scp)') parser.add_argument('--train-label', type=str, required=True, help='Filename of train label data (json)') parser.add_argument('--valid-label', type=str, required=True, help='Filename of validation label data (json)') # network archtecture # encoder parser.add_argument('--etype', default='blstmp', type=str, choices=['blstm', 'blstmp', 'vggblstmp', 'vggblstm'], help='Type of encoder network architecture') parser.add_argument('--elayers', default=4, type=int, help='Number of encoder layers') parser.add_argument('--eunits', '-u', default=300, type=int, help='Number of encoder hidden units') parser.add_argument('--eprojs', default=320, type=int, help='Number of encoder projection units') parser.add_argument( '--subsample', default=1, type=str, help= 'Subsample input frames x_y_z means subsample every x frame at 1st layer, ' 'every y frame at 2nd layer etc.') # attention parser.add_argument('--atype', default='dot', type=str, choices=['dot', 'location', 'noatt'], help='Type of attention architecture') parser.add_argument('--adim', default=320, type=int, help='Number of attention transformation dimensions') parser.add_argument('--aconv-chans', default=-1, type=int, help='Number of attention convolution channels \ (negative value indicates no location-aware attention)' ) parser.add_argument('--aconv-filts', default=100, type=int, help='Number of attention convolution filters \ (negative value indicates no location-aware attention)' ) # decoder parser.add_argument('--dtype', default='lstm', type=str, choices=['lstm'], help='Type of decoder network architecture') parser.add_argument('--dlayers', default=1, type=int, help='Number of decoder layers') parser.add_argument('--dunits', default=320, type=int, help='Number of decoder hidden units') parser.add_argument( '--mtlalpha', default=0.5, type=float, help= 'Multitask learning coefficient, alpha: alpha*ctc_loss + (1-alpha)*att_loss ' ) # model (parameter) related parser.add_argument('--dropout-rate', default=0.0, type=float, help='Dropout rate') # minibatch related parser.add_argument('--batch-size', '-b', default=50, type=int, help='Batch size') parser.add_argument( '--maxlen-in', default=800, type=int, metavar='ML', help='Batch size is reduced if the input sequence length > ML') parser.add_argument( '--maxlen-out', default=150, type=int, metavar='ML', help='Batch size is reduced if the output sequence length > ML') # optimization related parser.add_argument('--opt', default='adadelta', type=str, choices=['adadelta', 'adam'], help='Optimizer') parser.add_argument('--eps', default=1e-8, type=float, help='Epsilon constant for optimizer') parser.add_argument('--eps-decay', default=0.01, type=float, help='Decaying ratio of epsilon') parser.add_argument('--criterion', default='acc', type=str, choices=['loss', 'acc'], help='Criterion to perform epsilon decay') parser.add_argument('--threshold', default=1e-4, type=float, help='Threshold to stop iteration') parser.add_argument('--epochs', '-e', default=30, type=int, help='Number of maximum epochs') parser.add_argument('--grad-clip', default=5, type=float, help='Gradient norm threshold to clip') args = parser.parse_args() # logging info if args.verbose > 0: logging.basicConfig( level=logging.INFO, format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') else: logging.basicConfig( level=logging.WARN, format= '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s') logging.warning('Skip DEBUG/INFO messages') # display PYTHONPATH logging.info('python path = ' + os.environ['PYTHONPATH']) # display chainer version logging.info('chainer version = ' + chainer.__version__) # seed setting (chainer seed may not need it) nseed = args.seed random.seed(nseed) np.random.seed(nseed) torch.manual_seed(nseed) os.environ['CHAINER_SEED'] = str(nseed) logging.info('chainer seed = ' + os.environ['CHAINER_SEED']) # debug mode setting # 0 would be fastest, but 1 seems to be reasonable # by considering reproducability # revmoe type check if args.debugmode < 2: chainer.config.type_check = False logging.info('chainer type check is disabled') # use determinisitic computation or not if args.debugmode < 1: chainer.config.cudnn_deterministic = False torch.backends.cudnn.deterministic = False logging.info('chainer cudnn deterministic is disabled') else: torch.backends.cudnn.deterministic = True chainer.config.cudnn_deterministic = True # load dictionary for debug log if args.dict is not None: with open(args.dict, 'rb') as f: dictionary = f.readlines() char_list = [ entry.decode('utf-8').split(' ')[0] for entry in dictionary ] char_list.insert(0, '<blank>') char_list.append('<eos>') args.char_list = char_list else: args.char_list = None # check cuda and cudnn availability if not chainer.cuda.available: logging.warning('cuda is not available') if not chainer.cuda.cudnn_enabled: logging.warning('cudnn is not available') # get input and output dimension info with open(args.valid_label, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]['idim']) odim = int(valid_json[utts[0]]['odim']) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify model architecture e2e = E2E(idim, odim, args) model = Loss(e2e, args.mtlalpha) # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.conf' with open(model_conf, 'wb') as f: logging.info('writing a model config file to' + model_conf) # TODO(watanabe) use others than pickle, possibly json, and save as a text pickle.dump((idim, odim, args), f) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) # Set gpu gpu_id = int(args.gpu) logging.info('gpu id: ' + str(gpu_id)) if gpu_id >= 0: # Make a specified GPU current model.cuda(gpu_id) # Copy the model to the GPU # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), rho=0.95, eps=args.eps) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters()) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", model.reporter) setattr(optimizer, "serialize", lambda s: model.reporter.serialize(s)) # read json data with open(args.train_label, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_label, 'rb') as f: valid_json = json.load(f)['utts'] # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) # hack to make batchsze argument as 1 # actual bathsize is included in a list train_iter = chainer.iterators.SerialIterator(train, 1) valid_iter = chainer.iterators.SerialIterator(valid, 1, repeat=False, shuffle=False) # prepare Kaldi reader train_reader = lazy_io.read_dict_scp(args.train_feat) valid_reader = lazy_io.read_dict_scp(args.valid_feat) # Set up a trainer updater = SeqUpdaterKaldi(model, args.grad_clip, train_iter, optimizer, train_reader, gpu_id) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: raise NotImplementedError chainer.serializers.load_npz(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend( SeqEvaluaterKaldi(model, valid_iter, model.reporter, valid_reader, device=gpu_id)) # Take a snapshot for each specified epoch trainer.extend(extensions.snapshot(), trigger=(1, 'epoch')) # Make a plot for training and validation values trainer.extend( extensions.PlotReport([ 'main/loss', 'validation/main/loss', 'main/loss_ctc', 'validation/main/loss_ctc', 'main/loss_att', 'validation/main/loss_att' ], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) # Save best models def torch_save(path, _): torch.save(model.state_dict(), path) torch.save(model, path + ".pkl") trainer.extend( extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save), trigger=training.triggers.MinValueTrigger('validation/main/loss')) trainer.extend( extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # epsilon decay in the optimizer def torch_load(path, obj): model.load_state_dict(torch.load(path)) return obj if args.opt == 'adadelta': if args.criterion == 'acc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=(100, 'iteration'))) report_keys = [ 'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att', 'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att', 'main/acc', 'validation/main/acc', 'elapsed_time' ] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main'). param_groups[0]["eps"]), trigger=(100, 'iteration')) report_keys.append('eps') trainer.extend(extensions.PrintReport(report_keys), trigger=(100, 'iteration')) trainer.extend(extensions.ProgressBar()) # Run the training trainer.run()
def train(args): '''Run training''' # seed setting torch.manual_seed(args.seed) # debug mode setting # 0 would be fastest, but 1 seems to be reasonable # by considering reproducability # revmoe type check if args.debugmode < 2: chainer.config.type_check = False logging.info('torch type check is disabled') # use determinisitic computation or not if args.debugmode < 1: torch.backends.cudnn.deterministic = False logging.info('torch cudnn deterministic is disabled') else: torch.backends.cudnn.deterministic = True # check cuda availability if not torch.cuda.is_available(): logging.warning('cuda is not available') # get input and output dimension info with open(args.valid_label, 'rb') as f: valid_json = json.load(f)['utts'] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]['idim']) odim = int(valid_json[utts[0]]['odim']) logging.info('#input dims : ' + str(idim)) logging.info('#output dims: ' + str(odim)) # specify model architecture e2e = E2E(idim, odim, args) model = Loss(e2e, args.mtlalpha) # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + '/model.conf' with open(model_conf, 'wb') as f: logging.info('writing a model config file to' + model_conf) # TODO(watanabe) use others than pickle, possibly json, and save as a text pickle.dump((idim, odim, args), f) for key in sorted(vars(args).keys()): logging.info('ARGS: ' + key + ': ' + str(vars(args)[key])) # Set gpu reporter = model.reporter ngpu = int(args.gpu) if ngpu == 1: gpu_id = 0 logging.info('gpu id: ' + str(gpu_id)) model.cuda() elif ngpu > 1: gpu_id = range(ngpu) logging.info('gpu id: ' + str(gpu_id)) model = torch.nn.DataParallel(model, device_ids=gpu_id) model.cuda() # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta( model.parameters(), rho=0.95, eps=args.eps) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters()) # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # read json data with open(args.train_label, 'rb') as f: train_json = json.load(f)['utts'] with open(args.valid_label, 'rb') as f: valid_json = json.load(f)['utts'] # make minibatch list (variable length) train = make_batchset(train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) valid = make_batchset(valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches) # hack to make batchsze argument as 1 # actual bathsize is included in a list train_iter = chainer.iterators.SerialIterator(train, 1) valid_iter = chainer.iterators.SerialIterator( valid, 1, repeat=False, shuffle=False) # prepare Kaldi reader train_reader = lazy_io.read_dict_scp(args.train_feat) valid_reader = lazy_io.read_dict_scp(args.valid_feat) # Set up a trainer updater = PytorchSeqUpdaterKaldi( model, args.grad_clip, train_iter, optimizer, train_reader, gpu_id) trainer = training.Trainer( updater, (args.epochs, 'epoch'), out=args.outdir) # Resume from a snapshot if args.resume: raise NotImplementedError chainer.serializers.load_npz(args.resume, trainer) # Evaluate the model with the test dataset for each epoch trainer.extend(PytorchSeqEvaluaterKaldi( model, valid_iter, reporter, valid_reader, device=gpu_id)) # Take a snapshot for each specified epoch trainer.extend(extensions.snapshot(), trigger=(1, 'epoch')) # Make a plot for training and validation values trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss', 'main/loss_ctc', 'validation/main/loss_ctc', 'main/loss_att', 'validation/main/loss_att'], 'epoch', file_name='loss.png')) trainer.extend(extensions.PlotReport(['main/acc', 'validation/main/acc'], 'epoch', file_name='acc.png')) # Save best models def torch_save(path, _): torch.save(model.state_dict(), path) torch.save(model, path + ".pkl") trainer.extend(extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save), trigger=training.triggers.MinValueTrigger('validation/main/loss')) trainer.extend(extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save), trigger=training.triggers.MaxValueTrigger('validation/main/acc')) # epsilon decay in the optimizer def torch_load(path, obj): model.load_state_dict(torch.load(path)) return obj if args.opt == 'adadelta': if args.criterion == 'acc': trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/acc', lambda best_value, current_value: best_value > current_value)) elif args.criterion == 'loss': trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) trainer.extend(adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( 'validation/main/loss', lambda best_value, current_value: best_value < current_value)) # Write a log of evaluation statistics for each epoch trainer.extend(extensions.LogReport(trigger=(100, 'iteration'))) report_keys = ['epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att', 'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att', 'main/acc', 'validation/main/acc', 'elapsed_time'] if args.opt == 'adadelta': trainer.extend(extensions.observe_value( 'eps', lambda trainer: trainer.updater.get_optimizer('main').param_groups[0]["eps"]), trigger=(100, 'iteration')) report_keys.append('eps') trainer.extend(extensions.PrintReport( report_keys), trigger=(100, 'iteration')) trainer.extend(extensions.ProgressBar()) # Run the training trainer.run()
discriminator = None # Set gpu gpu_id = int(args.gpu) logging.info('gpu id: ' + str(gpu_id)) if gpu_id >= 0: # Make a specified GPU current model.cuda(gpu_id) # Copy the model to the GPU if discriminator: discriminator.cuda(gpu_id) # Setup an optimizer if args.lock_encoder: model_params = parameters(model, model.predictor.enc) else: model_params = model.parameters() if args.opt == 'adadelta': optimizer = torch.optim.Adadelta(model_params, lr=args.lr, rho=0.95, eps=args.eps, weight_decay=args.weight_decay) if discriminator: d_optimizer = torch.optim.Adadelta(discriminator.parameters(), lr=args.lr, rho=0.95, eps=args.eps, weight_decay=args.weight_decay) elif args.opt == 'adam': optimizer = torch.optim.Adam(model_params,
# specify model architecture e2e = E2E(idim, odim, args) model = Loss(e2e, args.mtlalpha) # Set gpu gpu_id = int(args.gpu) logging.info('gpu id: ' + str(gpu_id)) if gpu_id >= 0: # Make a specified GPU current model.cuda(gpu_id) # Copy the model to the GPU # Setup an optimizer if args.opt == 'adadelta': optimizer = torch.optim.Adadelta( model.parameters(), lr=args.lr, rho=0.95, eps=args.eps) elif args.opt == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # prepare Kaldi reader train_reader = lazy_io.read_dict_scp(args.train_feat) valid_reader = lazy_io.read_dict_scp(args.valid_feat) best = dict(loss=float("inf"), acc=-float("inf")) opt_key = "eps" if args.opt == "adadelta" else "lr" def get_opt_param(): return optimizer.param_groups[0][opt_key] # training loop result = GlobalResult(args.epochs, args.outdir) for epoch in range(args.epochs):