Example #1
0
def train(args):
    '''Run training'''
    # seed setting
    torch.manual_seed(args.seed)

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # revmoe type check
    if args.debugmode < 2:
        chainer.config.type_check = False
        logging.info('torch type check is disabled')
    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    # TODO(nelson) remove in future
    if 'input' not in valid_json[utts[0]]:
        logging.error("input file format (json) is modified, please redo"
                      "stage 2: Dictionary and Json Data Preparation")
        sys.exit(1)
    idim = int(valid_json[utts[0]]['input'][0]['shape'][1])
    odim = int(valid_json[utts[0]]['output'][0]['shape'][1])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify attention, CTC, hybrid mode
    if args.mtlalpha == 1.0:
        mtl_mode = 'ctc'
        logging.info('Pure CTC mode')
    elif args.mtlalpha == 0.0:
        mtl_mode = 'att'
        logging.info('Pure attention mode')
    else:
        mtl_mode = 'mtl'
        logging.info('Multitask learning mode')

    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.conf'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to' + model_conf)
        # TODO(watanabe) use others than pickle, possibly json, and save as a text
        pickle.dump((idim, odim, args), f)
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # Set gpu
    reporter = model.reporter
    ngpu = args.ngpu
    if ngpu == 1:
        gpu_id = range(ngpu)
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
    elif ngpu > 1:
        gpu_id = range(ngpu)
        logging.info('gpu id: ' + str(gpu_id))
        model = DataParallel(model, device_ids=gpu_id)
        model.cuda()
        logging.info('batch size is automatically increased (%d -> %d)' %
                     (args.batch_size, args.batch_size * args.ngpu))
        args.batch_size *= args.ngpu
    else:
        gpu_id = [-1]

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # read json data
    with open(args.train_json, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_json, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    valid = make_batchset(valid_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    train_iter = chainer.iterators.SerialIterator(train, 1)
    valid_iter = chainer.iterators.SerialIterator(valid,
                                                  1,
                                                  repeat=False,
                                                  shuffle=False)

    # converter choice
    converter = converter_kaldi
    if args.input_tensor:
        converter = converter_tensor

    # Set up a trainer
    updater = PytorchSeqUpdaterKaldi(model,
                                     args.grad_clip,
                                     train_iter,
                                     optimizer,
                                     converter=converter,
                                     device=gpu_id)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)
        if ngpu > 1:
            model.module.load_state_dict(
                torch.load(args.outdir + '/model.acc.best'))
        else:
            model.load_state_dict(torch.load(args.outdir + '/model.acc.best'))
        model = trainer.updater.model

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        PytorchSeqEvaluaterKaldi(model,
                                 valid_iter,
                                 reporter,
                                 converter=converter,
                                 device=gpu_id))

    # Save attention weight each epoch
    if args.num_save_attention > 0 and args.mtlalpha != 1.0:
        data = sorted(list(valid_json.items())[:args.num_save_attention],
                      key=lambda x: int(x[1]['input'][0]['shape'][1]),
                      reverse=True)
        data = converter([data], device=gpu_id)
        trainer.extend(PlotAttentionReport(model, data,
                                           args.outdir + "/att_ws"),
                       trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))

    # Save best models
    def torch_save(path, _):
        if ngpu > 1:
            torch.save(model.module.state_dict(), path)
            torch.save(model.module, path + ".pkl")
        else:
            torch.save(model.state_dict(), path)
            torch.save(model, path + ".pkl")

    trainer.extend(
        extensions.snapshot_object(model,
                                   'model.loss.best',
                                   savefun=torch_save),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    # save the model after each epoch
    trainer.extend(extensions.snapshot_object(model,
                                              'model_epoch{.updater.epoch}',
                                              savefun=torch_save),
                   trigger=(1, 'epoch'))

    if mtl_mode is not 'ctc':
        trainer.extend(
            extensions.snapshot_object(model,
                                       'model.acc.best',
                                       savefun=torch_save),
            trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # epsilon decay in the optimizer
    def torch_load(path, obj):
        if ngpu > 1:
            model.module.load_state_dict(torch.load(path))
        else:
            model.load_state_dict(torch.load(path))
        return obj

    if args.opt == 'adadelta':
        if args.criterion == 'acc' and mtl_mode is not 'ctc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(100, 'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(100, 'iteration'))
        report_keys.append('eps')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(100, 'iteration'))

    trainer.extend(extensions.ProgressBar())

    # Run the training
    trainer.run()
Example #2
0
def main():
    parser = argparse.ArgumentParser()
    # general configuration
    parser.add_argument('--gpu',
                        '-g',
                        default='-1',
                        type=str,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--outdir',
                        type=str,
                        required=True,
                        help='Output directory')
    parser.add_argument('--debugmode', default=1, type=int, help='Debugmode')
    parser.add_argument('--dict', required=True, help='Dictionary')
    parser.add_argument('--seed', default=1, type=int, help='Random seed')
    parser.add_argument('--debugdir',
                        type=str,
                        help='Output directory for debugging')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--minibatches',
                        '-N',
                        type=int,
                        default='-1',
                        help='Process only N minibatches (for debug)')
    parser.add_argument('--verbose',
                        '-V',
                        default=0,
                        type=int,
                        help='Verbose option')
    # task related
    parser.add_argument('--train-feat',
                        type=str,
                        required=True,
                        help='Filename of train feature data (Kaldi scp)')
    parser.add_argument('--valid-feat',
                        type=str,
                        required=True,
                        help='Filename of validation feature data (Kaldi scp)')
    parser.add_argument('--train-label',
                        type=str,
                        required=True,
                        help='Filename of train label data (json)')
    parser.add_argument('--valid-label',
                        type=str,
                        required=True,
                        help='Filename of validation label data (json)')
    # network archtecture
    # encoder
    parser.add_argument('--etype',
                        default='blstmp',
                        type=str,
                        choices=['blstm', 'blstmp', 'vggblstmp', 'vggblstm'],
                        help='Type of encoder network architecture')
    parser.add_argument('--elayers',
                        default=4,
                        type=int,
                        help='Number of encoder layers')
    parser.add_argument('--eunits',
                        '-u',
                        default=300,
                        type=int,
                        help='Number of encoder hidden units')
    parser.add_argument('--eprojs',
                        default=320,
                        type=int,
                        help='Number of encoder projection units')
    parser.add_argument(
        '--subsample',
        default=1,
        type=str,
        help=
        'Subsample input frames x_y_z means subsample every x frame at 1st layer, '
        'every y frame at 2nd layer etc.')
    # attention
    parser.add_argument('--atype',
                        default='dot',
                        type=str,
                        choices=['dot', 'location', 'noatt'],
                        help='Type of attention architecture')
    parser.add_argument('--adim',
                        default=320,
                        type=int,
                        help='Number of attention transformation dimensions')
    parser.add_argument('--aconv-chans',
                        default=-1,
                        type=int,
                        help='Number of attention convolution channels \
                        (negative value indicates no location-aware attention)'
                        )
    parser.add_argument('--aconv-filts',
                        default=100,
                        type=int,
                        help='Number of attention convolution filters \
                        (negative value indicates no location-aware attention)'
                        )
    # decoder
    parser.add_argument('--dtype',
                        default='lstm',
                        type=str,
                        choices=['lstm'],
                        help='Type of decoder network architecture')
    parser.add_argument('--dlayers',
                        default=1,
                        type=int,
                        help='Number of decoder layers')
    parser.add_argument('--dunits',
                        default=320,
                        type=int,
                        help='Number of decoder hidden units')
    parser.add_argument(
        '--mtlalpha',
        default=0.5,
        type=float,
        help=
        'Multitask learning coefficient, alpha: alpha*ctc_loss + (1-alpha)*att_loss '
    )
    # model (parameter) related
    parser.add_argument('--dropout-rate',
                        default=0.0,
                        type=float,
                        help='Dropout rate')
    # minibatch related
    parser.add_argument('--batch-size',
                        '-b',
                        default=50,
                        type=int,
                        help='Batch size')
    parser.add_argument(
        '--maxlen-in',
        default=800,
        type=int,
        metavar='ML',
        help='Batch size is reduced if the input sequence length > ML')
    parser.add_argument(
        '--maxlen-out',
        default=150,
        type=int,
        metavar='ML',
        help='Batch size is reduced if the output sequence length > ML')
    # optimization related
    parser.add_argument('--opt',
                        default='adadelta',
                        type=str,
                        choices=['adadelta', 'adam'],
                        help='Optimizer')
    parser.add_argument('--eps',
                        default=1e-8,
                        type=float,
                        help='Epsilon constant for optimizer')
    parser.add_argument('--eps-decay',
                        default=0.01,
                        type=float,
                        help='Decaying ratio of epsilon')
    parser.add_argument('--criterion',
                        default='acc',
                        type=str,
                        choices=['loss', 'acc'],
                        help='Criterion to perform epsilon decay')
    parser.add_argument('--threshold',
                        default=1e-4,
                        type=float,
                        help='Threshold to stop iteration')
    parser.add_argument('--epochs',
                        '-e',
                        default=30,
                        type=int,
                        help='Number of maximum epochs')
    parser.add_argument('--grad-clip',
                        default=5,
                        type=float,
                        help='Gradient norm threshold to clip')
    args = parser.parse_args()

    # logging info
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s')
    else:
        logging.basicConfig(
            level=logging.WARN,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s')
        logging.warning('Skip DEBUG/INFO messages')

    # display PYTHONPATH
    logging.info('python path = ' + os.environ['PYTHONPATH'])

    # display chainer version
    logging.info('chainer version = ' + chainer.__version__)

    # seed setting (chainer seed may not need it)
    nseed = args.seed
    random.seed(nseed)
    np.random.seed(nseed)
    torch.manual_seed(nseed)
    os.environ['CHAINER_SEED'] = str(nseed)
    logging.info('chainer seed = ' + os.environ['CHAINER_SEED'])

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # revmoe type check
    if args.debugmode < 2:
        chainer.config.type_check = False
        logging.info('chainer type check is disabled')
    # use determinisitic computation or not
    if args.debugmode < 1:
        chainer.config.cudnn_deterministic = False
        torch.backends.cudnn.deterministic = False
        logging.info('chainer cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True
        chainer.config.cudnn_deterministic = True
    # load dictionary for debug log
    if args.dict is not None:
        with open(args.dict, 'rb') as f:
            dictionary = f.readlines()
        char_list = [
            entry.decode('utf-8').split(' ')[0] for entry in dictionary
        ]
        char_list.insert(0, '<blank>')
        char_list.append('<eos>')
        args.char_list = char_list
    else:
        args.char_list = None

    # check cuda and cudnn availability
    if not chainer.cuda.available:
        logging.warning('cuda is not available')
    if not chainer.cuda.cudnn_enabled:
        logging.warning('cudnn is not available')

    # get input and output dimension info
    with open(args.valid_label, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['idim'])
    odim = int(valid_json[utts[0]]['odim'])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.conf'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to' + model_conf)
        # TODO(watanabe) use others than pickle, possibly json, and save as a text
        pickle.dump((idim, odim, args), f)
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # Set gpu
    gpu_id = int(args.gpu)
    logging.info('gpu id: ' + str(gpu_id))
    if gpu_id >= 0:
        # Make a specified GPU current
        model.cuda(gpu_id)  # Copy the model to the GPU

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(),
                                         rho=0.95,
                                         eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", model.reporter)
    setattr(optimizer, "serialize", lambda s: model.reporter.serialize(s))

    # read json data
    with open(args.train_label, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_label, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    valid = make_batchset(valid_json, args.batch_size, args.maxlen_in,
                          args.maxlen_out, args.minibatches)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    train_iter = chainer.iterators.SerialIterator(train, 1)
    valid_iter = chainer.iterators.SerialIterator(valid,
                                                  1,
                                                  repeat=False,
                                                  shuffle=False)

    # prepare Kaldi reader
    train_reader = lazy_io.read_dict_scp(args.train_feat)
    valid_reader = lazy_io.read_dict_scp(args.valid_feat)

    # Set up a trainer
    updater = SeqUpdaterKaldi(model, args.grad_clip, train_iter, optimizer,
                              train_reader, gpu_id)
    trainer = training.Trainer(updater, (args.epochs, 'epoch'),
                               out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        raise NotImplementedError
        chainer.serializers.load_npz(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(
        SeqEvaluaterKaldi(model,
                          valid_iter,
                          model.reporter,
                          valid_reader,
                          device=gpu_id))

    # Take a snapshot for each specified epoch
    trainer.extend(extensions.snapshot(), trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    trainer.extend(
        extensions.PlotReport([
            'main/loss', 'validation/main/loss', 'main/loss_ctc',
            'validation/main/loss_ctc', 'main/loss_att',
            'validation/main/loss_att'
        ],
                              'epoch',
                              file_name='loss.png'))
    trainer.extend(
        extensions.PlotReport(['main/acc', 'validation/main/acc'],
                              'epoch',
                              file_name='acc.png'))

    # Save best models
    def torch_save(path, _):
        torch.save(model.state_dict(), path)
        torch.save(model, path + ".pkl")

    trainer.extend(
        extensions.snapshot_object(model,
                                   'model.loss.best',
                                   savefun=torch_save),
        trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    trainer.extend(
        extensions.snapshot_object(model, 'model.acc.best',
                                   savefun=torch_save),
        trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # epsilon decay in the optimizer
    def torch_load(path, obj):
        model.load_state_dict(torch.load(path))
        return obj

    if args.opt == 'adadelta':
        if args.criterion == 'acc':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.acc.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc', lambda best_value,
                               current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model,
                                            args.outdir + '/model.loss.best',
                                            load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss', lambda best_value,
                               current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(100, 'iteration')))
    report_keys = [
        'epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
        'validation/main/loss', 'validation/main/loss_ctc',
        'validation/main/loss_att', 'main/acc', 'validation/main/acc',
        'elapsed_time'
    ]
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').
            param_groups[0]["eps"]),
                       trigger=(100, 'iteration'))
        report_keys.append('eps')
    trainer.extend(extensions.PrintReport(report_keys),
                   trigger=(100, 'iteration'))

    trainer.extend(extensions.ProgressBar())

    # Run the training
    trainer.run()
Example #3
0
def train(args):
    '''Run training'''
    # seed setting
    torch.manual_seed(args.seed)

    # debug mode setting
    # 0 would be fastest, but 1 seems to be reasonable
    # by considering reproducability
    # revmoe type check
    if args.debugmode < 2:
        chainer.config.type_check = False
        logging.info('torch type check is disabled')
    # use determinisitic computation or not
    if args.debugmode < 1:
        torch.backends.cudnn.deterministic = False
        logging.info('torch cudnn deterministic is disabled')
    else:
        torch.backends.cudnn.deterministic = True

    # check cuda availability
    if not torch.cuda.is_available():
        logging.warning('cuda is not available')

    # get input and output dimension info
    with open(args.valid_label, 'rb') as f:
        valid_json = json.load(f)['utts']
    utts = list(valid_json.keys())
    idim = int(valid_json[utts[0]]['idim'])
    odim = int(valid_json[utts[0]]['odim'])
    logging.info('#input dims : ' + str(idim))
    logging.info('#output dims: ' + str(odim))

    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    # write model config
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)
    model_conf = args.outdir + '/model.conf'
    with open(model_conf, 'wb') as f:
        logging.info('writing a model config file to' + model_conf)
        # TODO(watanabe) use others than pickle, possibly json, and save as a text
        pickle.dump((idim, odim, args), f)
    for key in sorted(vars(args).keys()):
        logging.info('ARGS: ' + key + ': ' + str(vars(args)[key]))

    # Set gpu
    reporter = model.reporter
    ngpu = int(args.gpu)
    if ngpu == 1:
        gpu_id = 0
        logging.info('gpu id: ' + str(gpu_id))
        model.cuda()
    elif ngpu > 1:
        gpu_id = range(ngpu)
        logging.info('gpu id: ' + str(gpu_id))
        model = torch.nn.DataParallel(model, device_ids=gpu_id)
        model.cuda()

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(
            model.parameters(), rho=0.95, eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters())

    # FIXME: TOO DIRTY HACK
    setattr(optimizer, "target", reporter)
    setattr(optimizer, "serialize", lambda s: reporter.serialize(s))

    # read json data
    with open(args.train_label, 'rb') as f:
        train_json = json.load(f)['utts']
    with open(args.valid_label, 'rb') as f:
        valid_json = json.load(f)['utts']

    # make minibatch list (variable length)
    train = make_batchset(train_json, args.batch_size,
                          args.maxlen_in, args.maxlen_out, args.minibatches)
    valid = make_batchset(valid_json, args.batch_size,
                          args.maxlen_in, args.maxlen_out, args.minibatches)
    # hack to make batchsze argument as 1
    # actual bathsize is included in a list
    train_iter = chainer.iterators.SerialIterator(train, 1)
    valid_iter = chainer.iterators.SerialIterator(
        valid, 1, repeat=False, shuffle=False)

    # prepare Kaldi reader
    train_reader = lazy_io.read_dict_scp(args.train_feat)
    valid_reader = lazy_io.read_dict_scp(args.valid_feat)

    # Set up a trainer
    updater = PytorchSeqUpdaterKaldi(
        model, args.grad_clip, train_iter, optimizer, train_reader, gpu_id)
    trainer = training.Trainer(
        updater, (args.epochs, 'epoch'), out=args.outdir)

    # Resume from a snapshot
    if args.resume:
        raise NotImplementedError
        chainer.serializers.load_npz(args.resume, trainer)

    # Evaluate the model with the test dataset for each epoch
    trainer.extend(PytorchSeqEvaluaterKaldi(
        model, valid_iter, reporter, valid_reader, device=gpu_id))

    # Take a snapshot for each specified epoch
    trainer.extend(extensions.snapshot(), trigger=(1, 'epoch'))

    # Make a plot for training and validation values
    trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss',
                                          'main/loss_ctc', 'validation/main/loss_ctc',
                                          'main/loss_att', 'validation/main/loss_att'],
                                         'epoch', file_name='loss.png'))
    trainer.extend(extensions.PlotReport(['main/acc', 'validation/main/acc'],
                                         'epoch', file_name='acc.png'))

    # Save best models
    def torch_save(path, _):
        torch.save(model.state_dict(), path)
        torch.save(model, path + ".pkl")

    trainer.extend(extensions.snapshot_object(model, 'model.loss.best', savefun=torch_save),
                   trigger=training.triggers.MinValueTrigger('validation/main/loss'))
    trainer.extend(extensions.snapshot_object(model, 'model.acc.best', savefun=torch_save),
                   trigger=training.triggers.MaxValueTrigger('validation/main/acc'))

    # epsilon decay in the optimizer
    def torch_load(path, obj):
        model.load_state_dict(torch.load(path))
        return obj
    if args.opt == 'adadelta':
        if args.criterion == 'acc':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.acc.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/acc',
                               lambda best_value, current_value: best_value > current_value))
        elif args.criterion == 'loss':
            trainer.extend(restore_snapshot(model, args.outdir + '/model.loss.best', load_fn=torch_load),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))
            trainer.extend(adadelta_eps_decay(args.eps_decay),
                           trigger=CompareValueTrigger(
                               'validation/main/loss',
                               lambda best_value, current_value: best_value < current_value))

    # Write a log of evaluation statistics for each epoch
    trainer.extend(extensions.LogReport(trigger=(100, 'iteration')))
    report_keys = ['epoch', 'iteration', 'main/loss', 'main/loss_ctc', 'main/loss_att',
                   'validation/main/loss', 'validation/main/loss_ctc', 'validation/main/loss_att',
                   'main/acc', 'validation/main/acc', 'elapsed_time']
    if args.opt == 'adadelta':
        trainer.extend(extensions.observe_value(
            'eps', lambda trainer: trainer.updater.get_optimizer('main').param_groups[0]["eps"]),
            trigger=(100, 'iteration'))
        report_keys.append('eps')
    trainer.extend(extensions.PrintReport(
        report_keys), trigger=(100, 'iteration'))

    trainer.extend(extensions.ProgressBar())

    # Run the training
    trainer.run()
        discriminator = None

    # Set gpu
    gpu_id = int(args.gpu)
    logging.info('gpu id: ' + str(gpu_id))
    if gpu_id >= 0:
        # Make a specified GPU current
        model.cuda(gpu_id)  # Copy the model to the GPU
        if discriminator:
            discriminator.cuda(gpu_id)

    # Setup an optimizer
    if args.lock_encoder:
        model_params = parameters(model, model.predictor.enc)
    else:
        model_params = model.parameters()
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(model_params,
                                         lr=args.lr,
                                         rho=0.95,
                                         eps=args.eps,
                                         weight_decay=args.weight_decay)
        if discriminator:
            d_optimizer = torch.optim.Adadelta(discriminator.parameters(),
                                               lr=args.lr,
                                               rho=0.95,
                                               eps=args.eps,
                                               weight_decay=args.weight_decay)

    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model_params,
Example #5
0
    # specify model architecture
    e2e = E2E(idim, odim, args)
    model = Loss(e2e, args.mtlalpha)

    # Set gpu
    gpu_id = int(args.gpu)
    logging.info('gpu id: ' + str(gpu_id))
    if gpu_id >= 0:
        # Make a specified GPU current
        model.cuda(gpu_id)  # Copy the model to the GPU

    # Setup an optimizer
    if args.opt == 'adadelta':
        optimizer = torch.optim.Adadelta(
            model.parameters(), lr=args.lr, rho=0.95, eps=args.eps)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # prepare Kaldi reader
    train_reader = lazy_io.read_dict_scp(args.train_feat)
    valid_reader = lazy_io.read_dict_scp(args.valid_feat)

    best = dict(loss=float("inf"), acc=-float("inf"))
    opt_key = "eps" if args.opt == "adadelta" else "lr"
    def get_opt_param():
        return optimizer.param_groups[0][opt_key]

    # training loop
    result = GlobalResult(args.epochs, args.outdir)
    for epoch in range(args.epochs):