def verifyProxies(self, proxies): ''' Take as input dictionary of {name:proxystring} and verify that we can communicate with the server (by getting the detector or trainer). Return a dictionary with 'detector running' or 'trainer running' if running and 'configured' if not. Also print now so with long config files user sees output. ''' res = {} for key, value in proxies.iteritems(): # add short timeout value = value + ' -t 100' try: detector = easy.getDetector(value) res[key] = 'detector running' print("{0} {1}".format(key, res[key])) continue except: pass try: trainer = easy.getTrainer(value) res[key] = 'trainer running' print("{0} {1}".format(key, res[key])) continue except: pass try: trainer = easy.getFileServer(value) res[key] = 'FileServer running' print("{0} {1}".format(key, res[key])) continue except: pass try: trainer = easy.getCorpusServer(value) res[key] = 'Corpus running' print("{0} {1}".format(key, res[key])) continue except: pass res[key] = 'not running' print("{0} {1}".format(key, res[key])) return res
''' Easy! test for corpus_service.py Obtain labeled data from a LabelMe server. See http://new-labelme.csail.mit.edu/Release3.0 matz 6/19/2013 ''' import easy # The properties file for a LabelMe Corpus contains all pertinent information. # Take a look at corpus/LabelMeCarsTest.properties and pay particular # attention to the following properties: # LMFolders and LMObjectNames cs = easy.getCorpusServer( "PythonCorpusService:default -p 10021") corpus = easy.openCorpus( "corpus/LabelMeCircuit.properties", corpusServer=cs ) categories, lablist = easy.getDataSet( corpus, corpusServer=cs, createMirror=True ) print('Obtained {0} labeled artifact{1} from corpus "{2}":'.format( len(lablist), ("s","")[len(lablist)==1], corpus.name )); easy.printCategoryInfo( categories ) # draw the images and their annotations, one image at a time, # at a given maximum size (width, height) easy.drawLabelables( lablist, (512, 512) ) print("-----------")
# # TODO: currently breaks because Caltech101 doesn't get extracted as expected #categories, lablist = easy.getDataSet( "corpus/CvacCorpusTest" ) # categories, lablist = easy.getDataSet( "corpus/Caltech101.properties", createMirror=False ) #easy.printCategoryInfo( categories ) #runset = easy.createRunSet( categories["car_side"] ) #trainer = easy.getTrainer( "bowTrain:default -p 10103" ) #carSideModel = easy.train( trainer, runset ) # # Third, a slower walk-through of functionality that digs a bit deeper. All # following steps are part of that. # Obtain a set of labeled data from a Corpus, # print dataset information about this corpus # cs = easy.getCorpusServer("CorpusServer:default -p 10011") #corpus = easy.openCorpus( cs, "corpus/CvacCorpusTest.properties" ) #corpus = easy.openCorpus( cs, "corporate_logos" ); corpus = easy.openCorpus( cs, "trainImg" ); categories, lablist = easy.getDataSet( corpus, corpusServer=cs ) print('Obtained {0} labeled artifact{1} from corpus "{2}":'.format( len(lablist), ("s","")[len(lablist)==1], corpus.name )); easy.printCategoryInfo( categories ) # # add all samples from corpus to a RunSet, # also obtain a mapping from class ID to label name # res = easy.createRunSet( categories ) runset = res['runset'] classmap = res['classmap']