Example #1
0
class SuperResolution():
    def __init__(self):
        self.torchModelProcess = TorchModelProcess()
        self.device = self.torchModelProcess.getDevice()
        self.model = MSRResNet(
            super_resolution_config.in_nc,
            upscale_factor=super_resolution_config.upscale_factor).to(
                self.device)

    def load_weights(self, weights_path):
        self.torchModelProcess.loadLatestModelWeight(weights_path, self.model)
        self.torchModelProcess.modelTestInit(self.model)

    def super_resolution(self, input_path):
        if os.path.isdir(input_path):
            dataloader = ImagesLoader(input_path)
        else:
            dataloader = VideoLoader(input_path)

        prev_time = time.time()
        for i, (oriImg, imgs) in enumerate(dataloader):
            img_pil = Image.fromarray(cv2.cvtColor(oriImg, cv2.COLOR_BGR2RGB))
            img = img_pil.convert('YCbCr')
            y, cb, cr = img.split()
            img_to_tensor = ToTensor()
            input = img_to_tensor(y).view(1, -1, y.size[1], y.size[0])
            # Get detections
            with torch.no_grad():
                output = self.model(input.to(self.device))[0]

            print('Batch %d... Done. (%.3fs)' % (i, time.time() - prev_time))
            prev_time = time.time()

            out_img_y = output.cpu().detach().numpy()
            out_img_y *= 255.0
            out_img_y = out_img_y.clip(0, 255)
            out_img_y = Image.fromarray(np.uint8(out_img_y[0]), mode='L')

            out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC)
            out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC)
            out_img = Image.merge(
                'YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB')
            show_img = cv2.cvtColor(np.asarray(out_img), cv2.COLOR_RGB2BGR)

            cv2.namedWindow("image", 0)
            cv2.resizeWindow("image", int(show_img.shape[1] * 0.5),
                             int(show_img.shape[0] * 0.5))
            cv2.imshow('image', show_img)

            if cv2.waitKey() & 0xFF == 27:
                break
class Classify(BaseInference):
    def __init__(self, cfg_path, gpu_id, config_path=None):
        super().__init__(config_path)
        self.set_task_name(TaskName.Classify_Task)
        self.task_config = self.config_factory.get_config(
            self.task_name, self.config_path)

        self.torchModelProcess = TorchModelProcess()
        self.model = self.torchModelProcess.initModel(cfg_path, gpu_id)
        self.device = self.torchModelProcess.getDevice()

    def load_weights(self, weights_path):
        self.torchModelProcess.loadLatestModelWeight(weights_path, self.model)
        self.model = self.torchModelProcess.modelTestInit(self.model)
        self.model.eval()

    def process(self, input_path):
        dataloader = self.get_image_data_lodaer(input_path,
                                                self.task_config.image_size)

    def infer(self, input_data, threshold=0.0):
        with torch.no_grad():
            output_list = self.model(input_data.to(self.device))
            output = self.compute_output(output_list)
        return output

    def postprocess(self, result):
        class_indices = torch.argmax(result, dim=1)
        return class_indices

    def compute_output(self, output_list):
        output = None
        if len(output_list) == 1:
            output = self.model.lossList[0](output_list[0])
        return output
class PointCloudClassify(BaseInference):
    def __init__(self, cfg_path, gpu_id, config_path=None):
        super().__init__(config_path)
        self.set_task_name(TaskName.PC_Classify_Task)
        self.task_config = self.config_factory.get_config(
            self.task_name, self.config_path)

        self.torchModelProcess = TorchModelProcess()
        self.model = self.torchModelProcess.initModel(cfg_path, gpu_id)
        self.device = self.torchModelProcess.getDevice()

    def load_weights(self, weights_path):
        self.torchModelProcess.loadLatestModelWeight(weights_path, self.model)
        self.model = self.torchModelProcess.modelTestInit(self.model)
        self.model.eval()

    def process(self, input_path):
        pass

    def infer(self, input_data, threshold=0.0):
        with torch.no_grad():
            output_list = self.model(input_data.to(self.device))
            output = self.compute_output(output_list)
        return output

    def postprocess(self, result):
        pass

    def compute_output(self, output_list):
        output = None
        loss_count = len(self.model.lossList)
        if loss_count == 1:
            output = self.model.lossList[0](output_list)
        return output
Example #4
0
class Segmentation(BaseInference):
    def __init__(self, cfg_path, gpu_id, config_path=None):
        super().__init__(config_path)
        self.set_task_name(TaskName.Segment_Task)
        self.task_config = self.config_factory.get_config(
            self.task_name, self.config_path)

        self.torchModelProcess = TorchModelProcess()
        self.model = self.torchModelProcess.initModel(cfg_path, gpu_id)
        self.device = self.torchModelProcess.getDevice()

        self.result_process = SegmentResultProcess()

        self.result_show = SegmentionShow()

        self.threshold = 0.5
        self.src_size = (0, 0)

    def load_weights(self, weights_path):
        self.torchModelProcess.loadLatestModelWeight(weights_path, self.model)
        self.model = self.torchModelProcess.modelTestInit(self.model)
        self.model.eval()

    def process(self, input_path):
        dataloader = self.get_image_data_lodaer(input_path,
                                                self.task_config.image_size)
        for index, (src_image, image) in enumerate(dataloader):
            self.timer.tic()
            self.set_src_size(src_image)
            prediction, _ = self.infer(image, self.threshold)
            result = self.postprocess(prediction)
            print('Batch %d... Done. (%.3fs)' % (index, self.timer.toc()))
            if not self.result_show.show(src_image, result,
                                         self.task_config.label_is_gray,
                                         self.task_config.class_name):
                break

    def infer(self, input_data, threshold=0.0):
        with torch.no_grad():
            output_list = self.model(input_data.to(self.device))
            output = self.compute_output(output_list[:])
            prediction = self.result_process.get_detection_result(
                output, threshold)
        return prediction, output_list

    def postprocess(self, result):
        result = self.result_process.resize_segmention_result(
            self.src_size, self.task_config.image_size, result)
        return result

    def compute_output(self, output_list):
        count = len(output_list)
        preds = []
        for i in range(0, count):
            temp = self.model.lossList[i](output_list[i])
            preds.append(temp)
        prediction = torch.cat(preds, 1)
        prediction = np.squeeze(prediction.data.cpu().numpy())
        return prediction

    def set_src_size(self, src_data):
        shape = src_data.shape[:2]  # shape = [height, width]
        self.src_size = (shape[1], shape[0])
Example #5
0
class Detection2d(BaseInference):
    def __init__(self, cfg_path, gpu_id, config_path=None):
        super().__init__(config_path)
        self.set_task_name(TaskName.Detect2d_Task)
        self.task_config = self.config_factory.get_config(
            self.task_name, self.config_path)

        self.torchModelProcess = TorchModelProcess()
        self.result_process = Detect2dResultProcess()
        self.nms_process = FastNonMaxSuppression()
        self.result_show = DetectionShow()

        self.model = self.torchModelProcess.initModel(cfg_path, gpu_id)
        self.device = self.torchModelProcess.getDevice()

        self.src_size = (0, 0)

    def load_weights(self, weights_path):
        self.torchModelProcess.loadLatestModelWeight(weights_path, self.model)
        self.model = self.torchModelProcess.modelTestInit(self.model)
        self.model.eval()

    def process(self, input_path):
        dataloader = self.get_image_data_lodaer(input_path,
                                                self.task_config.image_size)
        for i, (src_image, img) in enumerate(dataloader):
            print('%g/%g' % (i + 1, len(dataloader)), end=' ')
            self.set_src_size(src_image)

            self.timer.tic()
            result = self.infer(img, self.task_config.confidence_th)
            detection_objects = self.postprocess(result)
            print('Batch %d... Done. (%.3fs)' % (i, self.timer.toc()))

            if not self.result_show.show(src_image, detection_objects):
                break

    def save_result(self, filename, detection_objects):
        for object in detection_objects:
            confidence = object.classConfidence * object.objectConfidence
            x1 = object.min_corner.x
            y1 = object.min_corner.y
            x2 = object.max_corner.x
            y2 = object.max_corner.y
            temp_save_path = os.path.join(self.task_config.save_result_dir,
                                          "%s.txt" % object.name)
            with open(temp_save_path, 'a') as file:
                file.write("{} {} {} {} {} {}\n".format(
                    filename, confidence, x1, y1, x2, y2))

    def infer(self, input_data, threshold=0.0):
        with torch.no_grad():
            output_list = self.model(input_data.to(self.device))
            output = self.compute_output(output_list)
            result = self.result_process.get_detection_result(
                output, threshold)
        return result

    def postprocess(self, result):
        detection_objects = self.nms_process.multi_class_nms(
            result, self.task_config.nms_th)
        detection_objects = self.result_process.resize_detection_objects(
            self.src_size, self.task_config.image_size, detection_objects,
            self.task_config.class_name)
        return detection_objects

    def compute_output(self, output_list):
        count = len(output_list)
        preds = []
        for i in range(0, count):
            temp = self.model.lossList[i](output_list[i])
            preds.append(temp)
        prediction = torch.cat(preds, 1)
        prediction = prediction.squeeze(0)
        return prediction

    def set_src_size(self, src_data):
        shape = src_data.shape[:2]  # shape = [height, width]
        self.src_size = (shape[1], shape[0])