Example #1
0
def test_lstm():
    composed = transforms.Compose([ToTensor()])
    transformed_dataset = EcgHearBeatsDataset(transform=composed)
    dataloader = DataLoader(transformed_dataset,
                            batch_size=4,
                            shuffle=True,
                            num_workers=4)

    lstmN = lstm.ECGLSTM(5, 512, 5, 2)

    for i, data in enumerate(dataloader):
        ecg_batch = data['cardiac_cycle'].permute(1, 0, 2).float()
        first_beat = ecg_batch[:, 0, :]
        print("First beat shape: {}".format(first_beat.shape))
        print("First beat label {}".format(data['beat_type'][0]))
        print("First beat label one hot {}".format(data['label'][0]))
        first_beat = first_beat.numpy().flatten()
        plt.plot(first_beat)
        plt.show()
        plt.figure()
        plt.plot(data['orig_beat'][0].numpy())
        plt.show()

        preds = lstmN(ecg_batch)
        print("Module output shape = {}".format(preds.shape))
        print("Preds: {}".format(preds))
        break
Example #2
0
def train_with_noise():
    beat_type = 'N'
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    with open('res_noise_{}.text'.format(beat_type), 'w') as fd:
        # for n in [500, 800, 1000, 1500, 3000, 5000, 7000, 10000, 15000]:
        for n in [0]:
            base_tomer_remote = '/home/nivgiladi/tomer/'
            model_dir = base_tomer_remote + 'ecg_pytorch/ecg_pytorch/classifiers/tensorboard/noise_{}/lstm_add_{}/'.format(
                str(n), beat_type)

            total_runs = 0
            BEST_AUC_N = 0
            BEST_AUC_S = 0
            BEST_AUC_V = 0
            BEST_AUC_F = 0
            BEST_AUC_Q = 0
            # while BEST_AUC_S <= 0.876:
            while total_runs < 10:
                if os.path.isdir(model_dir):
                    logging.info("Removing model dir")
                    shutil.rmtree(model_dir)
                net = lstm.ECGLSTM(5, 512, 5, 2).to(device)
                gen_details = GeneratorAdditionalDataConfig(
                    beat_type=beat_type,
                    checkpoint_path='',
                    num_examples_to_add=n)
                train_config = ECGTrainConfig(num_epochs=4,
                                              batch_size=16,
                                              lr=0.002,
                                              weighted_loss=False,
                                              weighted_sampling=True,
                                              device=device,
                                              add_data_from_gan=False,
                                              generator_details=gen_details,
                                              train_one_vs_all=False)
                train_classifier(net,
                                 model_dir=model_dir,
                                 train_config=train_config)
                total_runs += 1
            logging.info("Done after {} runs.".format(total_runs))
            logging.info(
                "Best AUC:\n N: {}\tS: {}\tV: {}\tF: {}\tQ: {}".format(
                    BEST_AUC_N, BEST_AUC_S, BEST_AUC_V, BEST_AUC_F,
                    BEST_AUC_Q))
            w = "#n: {} .Best AUC:\n N: {}\tS: {}\tV: {}\tF: {}\tQ: {}\n".format(
                n, BEST_AUC_N, BEST_AUC_S, BEST_AUC_V, BEST_AUC_F, BEST_AUC_Q)
            fd.write(w)
Example #3
0
def find_optimal_checkpoint(chk_dir, beat_type, gan_type, device,
                            num_samples_to_add):
    model_dir = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/tensorboard/{}/find_optimal_chk_{}_{}_agg/' \
        .format(beat_type, str(num_samples_to_add), gan_type)

    writer = SummaryWriter(model_dir)
    if not os.path.isdir(chk_dir):
        raise ValueError("{} not a directory".format(chk_dir))

    #
    # Define summary values:
    #
    mean_auc_values = []
    best_auc_values = []
    final_dict = {}
    for i, chk_name in enumerate(os.listdir(chk_dir)):
        if chk_name.startswith('checkpoint'):
            chk_path = os.path.join(chk_dir, chk_name)

            #
            # Train configurations:
            #
            model_dir = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/tensorboard/{}/lstm_{}_{}_{}/'.format(
                beat_type, str(num_samples_to_add), gan_type, chk_name)
            gen_details = GeneratorAdditionalDataConfig(
                beat_type=beat_type,
                checkpoint_path=chk_path,
                num_examples_to_add=num_samples_to_add,
                gan_type=gan_type)
            train_config = ECGTrainConfig(num_epochs=5,
                                          batch_size=20,
                                          lr=0.0002,
                                          weighted_loss=False,
                                          weighted_sampling=True,
                                          device=device,
                                          add_data_from_gan=True,
                                          generator_details=gen_details,
                                          train_one_vs_all=False)
            #
            # Run 10 times each configuration:
            #
            total_runs = 0
            best_auc_per_run = []
            while total_runs < 10:
                if os.path.isdir(model_dir):
                    logging.info("Removing model dir")
                    shutil.rmtree(model_dir)
                #
                # Initialize the network each run:
                #
                net = lstm.ECGLSTM(5, 512, 5, 2).to(device)

                #
                # Train the classifier:
                #
                best_auc_scores = train_classifier(net,
                                                   model_dir=model_dir,
                                                   train_config=train_config)
                best_auc_per_run.append(
                    best_auc_scores[BEAT_TO_INDEX[beat_type]])
                writer.add_scalar('best_auc_{}'.format(chk_name),
                                  best_auc_scores[BEAT_TO_INDEX[beat_type]],
                                  total_runs)
                total_runs += 1
            mean_auc = np.mean(best_auc_per_run)
            max_auc = max(best_auc_per_run)
            logging.info("Checkpoint {}: Mean AUC {}. Max AUC: {}".format(
                chk_name, mean_auc, max_auc))
            mean_auc_values.append(mean_auc)
            best_auc_values.append(max_auc)
            final_dict[chk_name] = {}
            final_dict[chk_name]['MEAN'] = mean_auc
            final_dict[chk_name]['MAX'] = max_auc
            writer.add_scalar('mean_auc_per_chk', mean_auc, i)
            writer.add_scalar('max_auc_per_chk', max_auc, i)

    writer.close()
    #
    # Save data in pickle:
    #
    pickle_file_path = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/pickles_results/{}_{}_lstm_different_ckps_500.pkl'.format(
        beat_type, gan_type)
    with open(pickle_file_path, 'wb') as handle:
        pickle.dump(final_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
Example #4
0
def train_mult(beat_type, gan_type, device):
    summary_model_dir = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/tensorboard/{}/lstm_{}_summary/'.format(
        beat_type, gan_type)
    writer = SummaryWriter(summary_model_dir)
    #
    # Retrieve Checkpoint path:
    #
    if gan_type in ['DCGAN', 'ODE_GAN']:
        ck_path = checkpoint_paths.BEAT_AND_MODEL_TO_CHECKPOINT_PATH[
            beat_type][gan_type]
    else:
        ck_path = None

    #
    # Define summary values:
    #
    mean_auc_values = []
    var_auc_values = []
    best_auc_values = []

    best_auc_for_each_n = {}
    #
    # Run with different number of additional data from trained generator:
    #
    for n in [500, 800, 1000, 1500, 3000, 5000, 7000, 10000, 15000]:
        # for n in [5000]:
        #
        # Train configurations:
        #
        model_dir = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/tensorboard/{}/lstm_{}_{}/'.format(
            beat_type, str(n), gan_type)
        gen_details = GeneratorAdditionalDataConfig(beat_type=beat_type,
                                                    checkpoint_path=ck_path,
                                                    num_examples_to_add=n,
                                                    gan_type=gan_type)
        train_config = ECGTrainConfig(num_epochs=5,
                                      batch_size=20,
                                      lr=0.0002,
                                      weighted_loss=False,
                                      weighted_sampling=True,
                                      device=device,
                                      add_data_from_gan=True,
                                      generator_details=gen_details,
                                      train_one_vs_all=False)
        #
        # Run 10 times each configuration:
        #
        total_runs = 0
        best_auc_per_run = []
        while total_runs < 10:
            if os.path.isdir(model_dir):
                logging.info("Removing model dir")
                shutil.rmtree(model_dir)
            #
            # Initialize the network each run:
            #
            net = lstm.ECGLSTM(5, 512, 5, 2).to(device)

            #
            # Train the classifier:
            #
            best_auc_scores = train_classifier(net,
                                               model_dir=model_dir,
                                               train_config=train_config)
            best_auc_per_run.append(best_auc_scores[BEAT_TO_INDEX[beat_type]])
            writer.add_scalar('auc_with_additional_{}_beats'.format(n),
                              best_auc_scores[BEAT_TO_INDEX[beat_type]],
                              total_runs)
            if best_auc_scores[BEAT_TO_INDEX[beat_type]] >= 0.88:
                logging.info("Found desired AUC: {}".format(best_auc_scores))
                break
            total_runs += 1
        best_auc_for_each_n[n] = best_auc_per_run
        mean_auc_values.append(np.mean(best_auc_per_run))
        var_auc_values.append(np.var(best_auc_per_run))
        best_auc_values.append(max(best_auc_per_run))
        writer.add_scalar('mean_auc', np.mean(best_auc_per_run), n)
        writer.add_scalar('max_auc', max(best_auc_per_run), n)
    writer.close()

    #
    # Save data in pickle:
    #
    all_results = {
        'best_auc_for_each_n': best_auc_for_each_n,
        'mean': mean_auc_values,
        'var': var_auc_values,
        'best': best_auc_values
    }
    pickle_file_path = base_path + 'ecg_pytorch/ecg_pytorch/classifiers/pickles_results/{}_{}_lstm.pkl'.format(
        beat_type, gan_type)
    with open(pickle_file_path, 'wb') as handle:
        pickle.dump(all_results, handle, protocol=pickle.HIGHEST_PROTOCOL)