Example #1
0
    def test_matrix_scale(self):
        m = Matrix(2,2 , value = 1)
        m.scaleColumn(0 , 2)
        self.assertEqual(2 , m[0,0])
        self.assertEqual(2 , m[1,0])
        
        m.setAll(1)
        m.scaleRow(1 , 2 )
        self.assertEqual(2 , m[1,0])
        self.assertEqual(2 , m[1,1])

        with self.assertRaises(IndexError):
            m.scaleColumn(10 , 99)
        
        with self.assertRaises(IndexError):
            m.scaleRow(10 , 99)
Example #2
0
    def calculatePrincipalComponent(self, fs, local_obsdata, truncation_or_ncomp=3):
        pc = Matrix(1, 1)
        pc_obs = Matrix(1, 1)
        singular_values = DoubleVector()

        state_map = fs.getStateMap()
        ens_mask = BoolVector(False, self.ert().getEnsembleSize())
        state_map.selectMatching(ens_mask, RealizationStateEnum.STATE_HAS_DATA)
        active_list = ens_mask.createActiveList( )

        if len(ens_mask) > 0:
            meas_data = MeasData(ens_mask)
            obs_data = ObsData()

            self.ert().getObservations().getObservationAndMeasureData(fs, local_obsdata, active_list, meas_data, obs_data)

            meas_data.deactivateZeroStdSamples(obs_data)

            active_size = len(obs_data)

            if active_size > 0:
                S = meas_data.createS()
                D_obs = obs_data.createDObs()

                truncation, ncomp = self.truncationOrNumberOfComponents(truncation_or_ncomp)

                obs_data.scale(S, D_obs=D_obs)
                EnkfLinalg.calculatePrincipalComponents(S, D_obs, truncation, ncomp, pc, pc_obs, singular_values)
                if self.__prior_singular_values is None:
                    self.__prior_singular_values = singular_values
                else:
                    for row in range(pc.rows()):
                        factor = singular_values[row]/self.__prior_singular_values[row]
                        pc.scaleRow( row , factor )
                        pc_obs.scaleRow( row , factor )


                return PcaPlotData(local_obsdata.getName(), pc , pc_obs , singular_values)
        return None