Example #1
0
def make(train):
    root = get_resource(SIGHAN2005)
    train = os.path.join(root, train.split('#')[-1])
    if not os.path.isfile(train):
        full = train.replace('_90.txt', '.utf8')
        logger.info(f'Splitting {full} into training set and valid set with 9:1 proportion')
        valid = train.replace('90.txt', '10.txt')
        split_file(full, train=0.9, valid=0.1, test=0, names={'train': train, 'valid': valid})
        assert os.path.isfile(train), f'Failed to make {train}'
        assert os.path.isfile(valid), f'Failed to make {valid}'
        logger.info(f'Successfully made {train} {valid}')
 def to(self, devices=Union[str, List[int]], logger=None):
     if isinstance(devices, str):
         devices = cuda_devices(devices)
     if devices:
         if logger:
             logger.info(f'Using GPUs: {devices}')
         self.model = self.model.to(devices[0])
         if len(devices) > 1 and not isdebugging():
             self.model = nn.DataParallel(self.model, device_ids=devices)
     else:
         if logger:
             logger.info('Using CPU')
Example #3
0
 def serve(self, export_dir=None, grpc_port=8500, rest_api_port=0, overwrite=False, dry_run=False):
     export_dir = self.export_model_for_serving(export_dir, show_hint=False, overwrite=overwrite)
     if not dry_run:
         del self.model  # free memory
     logger.info('The inputs of exported model is shown below.')
     os.system(f'saved_model_cli show --all --dir {export_dir}/1')
     cmd = f'nohup tensorflow_model_server --model_name={os.path.splitext(os.path.basename(self.meta["load_path"]))[0]} ' \
           f'--model_base_path={export_dir} --port={grpc_port} --rest_api_port={rest_api_port} ' \
           f'>serve.log 2>&1 &'
     logger.info(f'Running ...\n{cmd}')
     if not dry_run:
         os.system(cmd)
 def summarize_vocabs(self, logger=None, header='Vocab summary:'):
     output = header + '\n'
     vocabs = {}
     for key, value in vars(self).items():
         if isinstance(value, VocabTF):
             vocabs[key] = value
     # tag vocab comes last usually
     for key, value in sorted(vocabs.items(), key=lambda kv: len(kv[1]), reverse=True):
         output += f'{key}' + value.summary(verbose=False) + '\n'
     output = output.strip()
     if logger:
         logger.info(output)
     else:
         print(output)
Example #5
0
    def evaluate(self, input_path: str, save_dir=None, output=False, batch_size=128, logger: logging.Logger = None,
                 callbacks: List[tf.keras.callbacks.Callback] = None, warm_up=True, verbose=True, **kwargs):
        input_path = get_resource(input_path)
        file_prefix, ext = os.path.splitext(input_path)
        name = os.path.basename(file_prefix)
        if not name:
            name = 'evaluate'
        if save_dir and not logger:
            logger = init_logger(name=name, root_dir=save_dir, level=logging.INFO if verbose else logging.WARN,
                                 mode='w')
        tst_data = self.transform.file_to_dataset(input_path, batch_size=batch_size)
        samples = self.num_samples_in(tst_data)
        num_batches = math.ceil(samples / batch_size)
        if warm_up:
            self.model.predict_on_batch(tst_data.take(1))
        if output:
            assert save_dir, 'Must pass save_dir in order to output'
            if isinstance(output, bool):
                output = os.path.join(save_dir, name) + '.predict' + ext
            elif isinstance(output, str):
                output = output
            else:
                raise RuntimeError('output ({}) must be of type bool or str'.format(repr(output)))
        timer = Timer()
        eval_outputs = self.evaluate_dataset(tst_data, callbacks, output, num_batches, **kwargs)
        loss, score, output = eval_outputs[0], eval_outputs[1], eval_outputs[2]
        delta_time = timer.stop()
        speed = samples / delta_time.delta_seconds

        if logger:
            f1: IOBES_F1_TF = None
            for metric in self.model.metrics:
                if isinstance(metric, IOBES_F1_TF):
                    f1 = metric
                    break
            extra_report = ''
            if f1:
                overall, by_type, extra_report = f1.state.result(full=True, verbose=False)
                extra_report = ' \n' + extra_report
            logger.info('Evaluation results for {} - '
                        'loss: {:.4f} - {} - speed: {:.2f} sample/sec{}'
                        .format(name + ext, loss,
                                format_scores(score) if isinstance(score, dict) else format_metrics(self.model.metrics),
                                speed, extra_report))
        if output:
            logger.info('Saving output to {}'.format(output))
            with open(output, 'w', encoding='utf-8') as out:
                self.evaluate_output(tst_data, out, num_batches, self.model.metrics)

        return (loss, score, speed) + eval_outputs[3:]
Example #6
0
def convert_to_stanford_dependency_330(src, dst):
    logger.info(
        f'Converting {os.path.basename(src)} to {os.path.basename(dst)} using Stanford Parser Version 3.3.0. '
        f'It might take a while...')
    sp_home = 'https://nlp.stanford.edu/software/stanford-parser-full-2013-11-12.zip'
    sp_home = get_resource(sp_home)
    # jar_path = get_resource(f'{sp_home}#stanford-parser.jar')
    code, out, err = get_exitcode_stdout_stderr(
        f'java -cp {sp_home}/* edu.stanford.nlp.trees.EnglishGrammaticalStructure -basic -keepPunct -conllx '
        f'-treeFile {src}')
    with open(dst, 'w') as f:
        f.write(out)
    if code:
        raise RuntimeError(
            f'Conversion failed with code {code} for {src}. The err message is:\n {err}'
            f'Do you have java installed? Do you have enough memory?')
Example #7
0
 def export_model_for_serving(self, export_dir=None, version=1, overwrite=False, show_hint=False):
     assert self.model, 'You have to fit or load a model before exporting it'
     if not export_dir:
         assert 'load_path' in self.meta, 'When not specifying save_dir, load_path has to present'
         export_dir = get_resource(self.meta['load_path'])
     model_path = os.path.join(export_dir, str(version))
     if os.path.isdir(model_path) and not overwrite:
         logger.info(f'{model_path} exists, skip since overwrite = {overwrite}')
         return export_dir
     logger.info(f'Exporting to {export_dir} ...')
     tf.saved_model.save(self.model, model_path)
     logger.info(f'Successfully exported model to {export_dir}')
     if show_hint:
         logger.info(f'You can serve it through \n'
                     f'tensorflow_model_server --model_name={os.path.splitext(os.path.basename(self.meta["load_path"]))[0]} '
                     f'--model_base_path={export_dir} --rest_api_port=8888')
     return export_dir
Example #8
0
 def fit(self, trn_data, dev_data, save_dir, batch_size, epochs, run_eagerly=False, logger=None, verbose=True,
         **kwargs):
     self._capture_config(locals())
     self.transform = self.build_transform(**self.config)
     if not save_dir:
         save_dir = tempdir_human()
     if not logger:
         logger = init_logger(name='train', root_dir=save_dir, level=logging.INFO if verbose else logging.WARN)
     logger.info('Hyperparameter:\n' + self.config.to_json())
     num_examples = self.build_vocab(trn_data, logger)
     # assert num_examples, 'You forgot to return the number of training examples in your build_vocab'
     logger.info('Building...')
     train_steps_per_epoch = math.ceil(num_examples / batch_size) if num_examples else None
     self.config.train_steps = train_steps_per_epoch * epochs if num_examples else None
     model, optimizer, loss, metrics = self.build(**merge_dict(self.config, logger=logger, training=True))
     logger.info('Model built:\n' + summary_of_model(self.model))
     self.save_config(save_dir)
     self.save_vocabs(save_dir)
     self.save_meta(save_dir)
     trn_data = self.build_train_dataset(trn_data, batch_size, num_examples)
     dev_data = self.build_valid_dataset(dev_data, batch_size)
     callbacks = self.build_callbacks(save_dir, logger, **self.config)
     # need to know #batches, otherwise progbar crashes
     dev_steps = math.ceil(self.num_samples_in(dev_data) / batch_size)
     checkpoint = get_callback_by_class(callbacks, tf.keras.callbacks.ModelCheckpoint)
     timer = Timer()
     history = None
     try:
         history = self.train_loop(**merge_dict(self.config, trn_data=trn_data, dev_data=dev_data, epochs=epochs,
                                                num_examples=num_examples,
                                                train_steps_per_epoch=train_steps_per_epoch, dev_steps=dev_steps,
                                                callbacks=callbacks, logger=logger, model=model, optimizer=optimizer,
                                                loss=loss,
                                                metrics=metrics, overwrite=True))
     except KeyboardInterrupt:
         print()
         if not checkpoint or checkpoint.best in (np.Inf, -np.Inf):
             self.save_weights(save_dir)
             logger.info('Aborted with model saved')
         else:
             logger.info(f'Aborted with model saved with best {checkpoint.monitor} = {checkpoint.best:.4f}')
     if not history:
         # noinspection PyTypeChecker
         history: tf.keras.callbacks.History = get_callback_by_class(callbacks, tf.keras.callbacks.History)
     delta_time = timer.stop()
     best_epoch_ago = 0
     if history and hasattr(history, 'epoch'):
         trained_epoch = len(history.epoch)
         logger.info('Trained {} epochs in {}, each epoch takes {}'.
                     format(trained_epoch, delta_time, delta_time / trained_epoch if trained_epoch else delta_time))
         io_util.save_json(history.history, io_util.path_join(save_dir, 'history.json'), cls=io_util.NumpyEncoder)
         monitor_history: List = history.history.get(checkpoint.monitor, None)
         if monitor_history:
             best_epoch_ago = len(monitor_history) - monitor_history.index(checkpoint.best)
         if checkpoint and monitor_history and checkpoint.best != monitor_history[-1]:
             logger.info(f'Restored the best model with '
                         f'{checkpoint.monitor} = {checkpoint.best:.4f} '
                         f'saved {best_epoch_ago} epochs ago')
             self.load_weights(save_dir)  # restore best model
     return history