Ud, JH = edrixs.UJ_to_UdJH(U, J) # Slater integrals F0, F2, F4 = edrixs.UdJH_to_F0F2F4(Ud, JH) # Two fermion terms: spin-orbital coupling (SOC) # The matrix is in the complex spherical Harmonics basis soc_zeta = 0.4 emat_soc = edrixs.atom_hsoc('t2g', soc_zeta) # Four fermion terms: Coulomb interaction # The 4-rank tensor is in the complex spherical Harmonics basis umat = edrixs.get_umat_slater('t2g', F0, F2, F4) # Fock basis in the complex spherical Harmonics basis with the orbital ordering: # |-1,up>, |-1,dn>, |0,up>, |0,dn>, |+1,up>, |+1,dn> # basis: 2d list of integers with 1 or 0, the shape is (15, 6) in this case # where, 15=6*5/2 is the total number of Fock basis and 6 is the total number of # single-particle orbitals basis = edrixs.get_fock_bin_by_N(norb, noccu) # quantum number of orbital angular momentum for t2g: l=1 ll = 1 # Matrices of lx,ly,lz,sx,sy,sz,jx,jy,jz in the single-particle basis # lx: l_orb[0], ly: l_orb[1], lz: l_orb[2] l_orb = edrixs.get_orb_momentum(ll, True) # sx: s_spin[0], sy: s_spin[1], sz: s_spin[2] s_spin = edrixs.get_spin_momentum(ll) # jx: j_so[0], jy: j_so[1], jz: j_so[2] j_so = l_orb + s_spin # very small Zeeman splitting along z-direction emat_zeeman = (l_orb[2] + s_spin[2]) * 1e-10 # many-body operators of L^2, Lz
v_orbl = 2 sx = edrixs.get_sx(v_orbl) sy = edrixs.get_sy(v_orbl) sz = edrixs.get_sz(v_orbl) zeeman = ext_B[0] * (2 * sx) + ext_B[1] * (2 * sy) + ext_B[2] * (2 * sz) emat_chb[0:norb_d, 0:norb_d] += zeeman ################################################################################ # Build the Fock basis and Hamiltonain and Diagonalize # ------------------------------------------------------------------------------ # We create the fock basis and build the Hamiltonian using the full set of # :math:`20` spin orbitals, specifying that they are occuplied by :math:`18` # electrons. See the :ref:`sphx_glr_auto_examples_example_0_ed_calculator.py` # example for more details if needed. We also set the ground state to zero # energy. basis = np.array(edrixs.get_fock_bin_by_N(ntot, v_noccu)) H = (edrixs.build_opers(2, emat_chb, basis) + edrixs.build_opers(4, umat, basis)) e, v = scipy.linalg.eigh(H) e -= e[0] ################################################################################ # State analysis # ------------------------------------------------------------------------------ # Now we have all the eigenvectors in the Fock basis, we need to pick out the # states that have 8, 9 and 10 :math:`d`-electrons, respectively. # The modulus squared of these coeffcients need to be added up to get # :math:`\alpha`, :math:`\beta`, and :math:`\gamma`. num_d_electrons = basis[:, :norb_d].sum(1)
def ed(): # 1-10: Ni-3d valence orbitals, 11-16: Ni-2p core orbitals # Single particle basis: complex shperical Harmonics ndorb, nporb, ntot = 10, 6, 16 emat_i = np.zeros((ntot, ntot), dtype=np.complex) emat_n = np.zeros((ntot, ntot), dtype=np.complex) # 4-index Coulomb interaction tensor, parameterized by # Slater integrals, which are obtained from Cowan's code F2_d, F4_d = 7.9521, 4.9387 # Averaged dd Coulomb interaction is set to be zero F0_d = edrixs.get_F0('d', F2_d, F4_d) G1_dp, G3_dp = 4.0509, 2.3037 # Averaged dp Coulomb interaction is set to be zero F0_dp, F2_dp = edrixs.get_F0('dp', G1_dp, G3_dp), 7.33495 umat_i = edrixs.get_umat_slater( 'dp', F0_d, F2_d, F4_d, # dd 0, 0, 0, 0, # dp 0, 0) # pp umat_n = edrixs.get_umat_slater( 'dp', F0_d, F2_d, F4_d, # dd F0_dp, F2_dp, G1_dp, G3_dp, # dp 0, 0) # pp # Atomic spin-orbit coupling zeta_d, zeta_p = 0.083, 11.24 emat_i[0:ndorb, 0:ndorb] += edrixs.atom_hsoc('d', zeta_d) emat_n[0:ndorb, 0:ndorb] += edrixs.atom_hsoc('d', zeta_d) emat_n[ndorb:ntot, ndorb:ntot] += edrixs.atom_hsoc('p', zeta_p) # Tetragonal crystal field splitting terms, # which are first defined in the real cubic Harmonics basis, # and then transformed to complex shperical Harmonics basis. dt, ds, dq = 0.011428, 0.035714, 0.13 tmp = np.zeros((5, 5), dtype=np.complex) tmp[0, 0] = 6 * dq - 2 * ds - 6 * dt # d3z2-r2 tmp[1, 1] = -4 * dq - 1 * ds + 4 * dt # dzx tmp[2, 2] = -4 * dq - 1 * ds + 4 * dt # dzy tmp[3, 3] = 6 * dq + 2 * ds - 1 * dt # dx2-y2 tmp[4, 4] = -4 * dq + 2 * ds - 1 * dt # dxy tmp[:, :] = edrixs.cb_op(tmp, edrixs.tmat_r2c('d')) emat_i[0:ndorb:2, 0:ndorb:2] += tmp emat_i[1:ndorb:2, 1:ndorb:2] += tmp emat_n[0:ndorb:2, 0:ndorb:2] += tmp emat_n[1:ndorb:2, 1:ndorb:2] += tmp # Build Fock basis in its binary form basis_i = edrixs.get_fock_bin_by_N(ndorb, 8, nporb, nporb) basis_n = edrixs.get_fock_bin_by_N(ndorb, 9, nporb, nporb - 1) ncfg_i, ncfg_n = len(basis_i), len(basis_n) # Build many-body Hamiltonian in Fock basis hmat_i = np.zeros((ncfg_i, ncfg_i), dtype=np.complex) hmat_n = np.zeros((ncfg_n, ncfg_n), dtype=np.complex) hmat_i[:, :] += edrixs.two_fermion(emat_i, basis_i, basis_i) hmat_i[:, :] += edrixs.four_fermion(umat_i, basis_i) hmat_n[:, :] += edrixs.two_fermion(emat_n, basis_n, basis_n) hmat_n[:, :] += edrixs.four_fermion(umat_n, basis_n) # Do exact-diagonalization to get eigenvalues and eigenvectors eval_i, evec_i = np.linalg.eigh(hmat_i) eval_n, evec_n = np.linalg.eigh(hmat_n) # Build dipolar transition operators dipole = np.zeros((3, ntot, ntot), dtype=np.complex) T_abs = np.zeros((3, ncfg_n, ncfg_i), dtype=np.complex) T_emi = np.zeros((3, ncfg_i, ncfg_n), dtype=np.complex) tmp = edrixs.get_trans_oper('dp') for i in range(3): dipole[i, 0:ndorb, ndorb:ntot] = tmp[i] # First, in the Fock basis T_abs[i] = edrixs.two_fermion(dipole[i], basis_n, basis_i) # Then, transfrom to the eigenvector basis T_abs[i] = edrixs.cb_op2(T_abs[i], evec_n, evec_i) T_emi[i] = np.conj(np.transpose(T_abs[i])) return eval_i, eval_n, T_abs, T_emi
crys_spin[0:12:2, 0:12:2] = crys_tmp crys_spin[1:12:2, 1:12:2] = crys_tmp crys_spin[:, :] = edrixs.cb_op(crys_spin, t_spinor) emat_i[0:12, 0:12] += crys_spin emat_n[0, 0:12, 0:12] += crys_spin emat_n[1, 0:12, 0:12] += crys_spin # static core-hole potential core_v = 2.0 for i in range(0, 6): emat_n[0, i, i] -= core_v for i in range(6, 12): emat_n[1, i, i] -= core_v basis_i = edrixs.get_fock_bin_by_N(12, 9, 12, 12) basis_n = [] tmp = edrixs.get_fock_bin_by_N(12, 10, 6, 5, 6, 6) basis_n.append(tmp) tmp = edrixs.get_fock_bin_by_N(12, 10, 6, 6, 6, 5) basis_n.append(tmp) ncfgs_i, ncfgs_n = len(basis_i), len(basis_n[0]) hmat_i = np.zeros((ncfgs_i, ncfgs_i), dtype=np.complex128) hmat_n = np.zeros((2, ncfgs_n, ncfgs_n), dtype=np.complex128) print("edrixs >>> building Hamiltonian without core-hole ...") hmat_i[:, :] += edrixs.two_fermion(emat_i, basis_i, basis_i) hmat_i[:, :] += edrixs.four_fermion(umat_i, basis_i) eval_i, evec_i = scipy.linalg.eigh(hmat_i) print("edrixs >>> Done!")
# prepare files for ed.x # write control parameters to file edrixs.write_config(ed_solver=2, num_val_orbs=norbs, neval=100, ncv=200, nvector=1, idump=True) # write nonzeros terms of two-fermion terms hsoc_i to file 'hopping_i.in', read by ed.x edrixs.write_emat(hsoc_i, 'hopping_i.in', 1E-10) # write nonzeros terms of four-fermion terms umat to file 'coulomb_i.in', read by ed.x edrixs.write_umat(umat_i, 'coulomb_i.in', 1E-10) # write fock basis of decimal format to file 'fock_i.in', read by ed.x edrixs.write_fock_dec_by_N(norbs, noccu, "fock_i.in") # we also use pure Python ED solver to get the eigenvalues print("edrixs >>> building Fock basis ...") basis_i = edrixs.get_fock_bin_by_N(norbs, noccu) print("edrixs >>> Done!") print("edrixs >>> building Hamiltonian ...") H = edrixs.build_opers(2, hsoc_i, basis_i) H += edrixs.build_opers(4, umat_i, basis_i) print("edrixs >>> Done!") print("edrixs >>> diagonalize Hamiltonian ...") eval_i, evec_i = scipy.linalg.eigh(H) edrixs.write_tensor(eval_i, "eval_i.dat", fmt_float='{:20.10f}') print("edrixs >>> Done!")
# spectra with and without multi-orbital terms switched on for system with and # without a cubic crystal field. We will use a :math:`d`-shell with two # electrons. ten_dqs = [0, 2, 4, 12] def diagonalize(ten_dq, umat): emat = edrixs.cb_op(edrixs.cf_cubic_d(ten_dq), edrixs.tmat_c2r('d', ispin=True)) H = (edrixs.build_opers(4, umat, basis) + edrixs.build_opers(2, emat, basis)) e, v = scipy.linalg.eigh(H) return e - e.min() basis = edrixs.get_fock_bin_by_N(10, 2) umat_no_multiorbital = np.copy(umat) B = F2 / 49 - 5 * F4 / 441 for val in [np.sqrt(3) * B / 2, np.sqrt(3) * B, 3 * B / 2]: umat_no_multiorbital[(np.abs(umat) - val) < 1e-6] = 0 fig, axs = plt.subplots(1, len(ten_dqs), figsize=(8, 3)) for cind, (ax, ten_dq) in enumerate(zip(axs, ten_dqs)): ax.hlines(diagonalize(ten_dq, umat), xmin=0, xmax=1, label='on', color=f'C{cind}') ax.hlines(diagonalize(ten_dq, umat_no_multiorbital), xmin=1.5,