w[1,:] = z.max(0) w[0,:] = w.min(0) return w[0,:] if __name__ == '__main__': import matplotlib.pyplot as plt import matplotlib.animation as animation fig,axs = plt.subplots(1,1,sharex=True,sharey=True) ax1 = axs #ax1.set_yscale('log') #ax1.set_yscale('linear') if 1: from edxrd.test import get_test_data x,y = get_test_data.getedxdata()['Austenite'] else: from edxrd.peakfitting import fpeak x = np.arange(4000) y = np.zeros_like(x) vals = [(1000,15.3,1200,0.25), (1300,15.5,12000,0.25), (1700,15.8,22000,0.25), (1750,16.3,32000,0.25), (1800,17.3,22000,0.25), (2300,18.3,11000,0.25), (2600,70.3,8000,0.25), (3200,22.3,6000,0.25), (3700,25.3,4000,0.25),
for label in ax1.get_yticklabels(): label.set_fontsize(11) for ax in [ax1,ax2]: for s in ax.spines.values(): s.set_linewidth(1) for line in ax.xaxis.get_ticklines()+ax.yaxis.get_ticklines(): line.set_markeredgewidth(1) ax.minorticks_off() f.savefig('wavelet_peaksearch.png',dpi=100) if 1: from edxrd.test import get_test_data edxdata = get_test_data.getedxdata() x,y = edxdata['LaB6'] x=np.poly1d([1e-9, 0.001942,0.005])(x) unit_cell = [4.15695,4.15695,4.15695,90,90,90] space_group = 'pm-3m' from edxrd.peaksearch import from_unitcell pks = from_unitcell(x,y,unit_cell,space_group,2,4.4, name='LaB6',shape='g') print pks[0].centre yfit = np.zeros_like(x) for pk in pks: yfit+=pk.profile(x) f,ax = plt.subplots(1,1,figsize=(7,4)) f.subplots_adjust(bottom=0.15)