Example #1
0
def reg_clusters_t_src(mod, IV, factor=None, c1=None, c0=None):
    """ Cluster permutation (src x time) t-tests on regression coefficients.
    Example: mod='main-VerbGivenWord', IV='LogFre'
    """

    dr = '/Volumes/Backup/sufAmb/regression/'
    f = dr+'ols_'+mod+'.pickled'
    data = load.unpickle(f)
    cond = "predictor=='%s'" % IV
    data = data.sub(cond)  # smaller ds with only the predictor of interest

    # cluster permutation parameters
    Y='beta'
    match='subject'
    samples=100
    pmin=0.05
    tstart=0.13
    tstop=0.45
    mintime=0.03
    minsource=10

    if factor is None:
        test = testnd.ttest_1samp(Y=Y, ds=data, match=match, samples=samples, pmin=pmin,
                                  tstart=tstart, tstop=tstop, mintime=mintime, minsource=minsource)
    elif factor == 'main':
        test = testnd.ttest_1samp(Y=Y, ds=data.sub("condition=='main'"), match=match, samples=samples, pmin=pmin,
                                  tstart=tstart, tstop=tstop, mintime=mintime, minsource=minsource)
    else:
        test = testnd.ttest_rel(Y=Y, ds=data, X=factor, c1=c1, c0=c0, match=match, samples=samples, pmin=pmin,
                                tstart=tstart, tstop=tstop,  mintime=mintime, minsource=minsource)

    print "Finished cluster test: mod=%s, IV=%s, factor=%s, c1=%s, c0=%s" % (mod, IV, factor, c1, c0)
    path = "/Volumes/BackUp/sufAmb/reg-cluster_time_src/ols_mod-%s_IV-%s_factor-%s_c1-%s_c0-%s.pickled" \
        % (mod, IV, factor, c1, c0)
    save.pickle(test, path)

    return test
Example #2
0
# current format: [subject1, stem, stemS, stemEd],
#                 [subject2, stem, stemS, stemEd],
#                 ...
#
# new format: [subject1, stem],
#             [subject1, stemS], 
#             ...
#             [subject2, stem], 
#             ...
#===============================================================================

dr = '/Volumes/Backup/sufAmb/pickled/'
IVs = ['VerbGivenWord_nocov', 'VerbGivenWord', 'Ambiguity', 'WrdVerbyWeighted', 'WrdBiasWeighted']

for v in IVs:
    fil = dr+'ols_'+v+'.pickled'
    data = load.unpickle(fil)
    c1, c3 = [], []
    c2 = ['all', 'stem', 'stemS', 'stemEd']*data.n_cases
    for s in range(data.n_cases):
        c1.extend( [ data['subject'][s] ]*4 )
        c3.extend( [ data['all'][s], data['stem'][s], data['stemS'][s], data['stemEd'][s] ] )
        
    c1 = Factor(c1)
    c2 = Factor(c2)
    c3 = combine(c3)
        
    newds = Dataset(('subject',c1), ('Type',c2), ('beta',c3), info=data.info)
    
    save.pickle(newds, fil)
Example #3
0
import os
import timeit

import mne
from eelbrain import datasets, save

mne.set_log_level('warning')

fname = 'temp.pickled'
if not os.path.exists(fname):
    ds = datasets.get_mne_sample(-0.1, 0.2, src='ico', sub="modality == 'A'")
    source = ds['src'].source
    y = ds['src'][0].x
    save.pickle((y, source), fname)


setup = '''
from itertools import izip
import numpy as np
import scipy as sp
from eelbrain.lab import stats, load

y, source = load.unpickle(%r)

out = np.empty(y.shape, np.uint32)
bin_buff = np.empty(y.shape, np.bool_)
int_buff = np.empty(y.shape, np.uint32)
threshold = 1
tail = 0
struct = sp.ndimage.generate_binary_structure(y.ndim, 1)
struct[::2] = False
Example #4
0
import os
import timeit

import mne
from eelbrain import datasets, save

mne.set_log_level("warning")

fname = "temp.pickled"
if not os.path.exists(fname):
    ds = datasets.get_mne_sample(-0.1, 0.2, src="ico", sub="modality == 'A'")
    source = ds["src"].source
    y = ds["src"][0].x
    save.pickle((y, source), fname)


setup = (
    """
from itertools import izip
import numpy as np
import scipy as sp
from eelbrain.lab import stats, load

y, source = load.unpickle(%r)

out = np.empty(y.shape, np.uint32)
bin_buff = np.empty(y.shape, np.bool_)
int_buff = np.empty(y.shape, np.uint32)
threshold = 1
tail = 0
struct = sp.ndimage.generate_binary_structure(y.ndim, 1)
Example #5
0
 def _execute(self):
     job = self.generate_job()
     if job:
         save.pickle(job(), self.path)
Example #6
0
pmin=0.15
tstart=0.13
tstop=0.45
mintime=0.03
minsource=10
X = 'Type'

tests = {}
for v in IVs:
    print v
    testsv = {}
    fil = dr+'corr_'+v+'.pickled'
    data = load.unpickle(fil)
    
    print 'main'
    testsv['main'] = testnd.ttest_1samp(Y=Y, ds=data.sub("Type=='all'"), match=match, samples=samples, pmin=pmin, tstart=tstart, tstop=tstop, mintime=mintime, minsource=minsource)
    print 'test 1'
    testsv['stemVstemS'] = testnd.ttest_rel(Y=Y, ds=data, X=X, c1='stem', c0='stemS', match=match, samples=samples, pmin=pmin, tstart=tstart, tstop=tstop,  mintime=mintime, minsource=minsource)
    print 'test 2'
    testsv['stemVstemEd'] = testnd.ttest_rel(Y=Y, ds=data, X=X, c1='stem', c0='stemEd', match=match, samples=samples, pmin=pmin, tstart=tstart, tstop=tstop, mintime=mintime, minsource=minsource)
    print 'test 3'
    testsv['stemSVstemEd'] = testnd.ttest_rel(Y=Y, ds=data, X=X, c1='stemS', c0='stemEd', match=match, samples=samples, pmin=pmin, tstart=tstart, tstop=tstop, mintime=mintime, minsource=minsource)
     
    for t in testsv:
        name = v+'_'+t
        path = '/Volumes/BackUp/sufAmb/corr_cluster_timespace/corr_%s.pickled' % name
        save.pickle(testsv[t], path)
    
    tests[v] = testsv

Example #7
0
'''
Created on Aug 18, 2014

@author: andrew
'''

from eelbrain import combine, load, save

dr = '/Volumes/Backup/sufAmb/pickled/'
IVs = ['VerbGivenWord_nocov', 'VerbGivenWord', 'Ambiguity', 'WrdVerbyWeighted', 'WrdBiasWeighted']

for v in IVs:
    fil = dr+'ols_'+v+'.pickled'
    data = load.unpickle(fil)
    for k in data.keys():
        if k == 'src~all_VerbGivenWord':
            data[k]
    save.pickle(data, fil)