Example #1
0
def test_anova_parc():
    "Test ANOVA with parc argument and source space data"
    set_log_level('warning', 'mne')
    ds = datasets.get_mne_sample(src='ico', sub="side.isin(('L', 'R'))")
    y = ds['src'].sub(source=('lateraloccipital-lh', 'cuneus-lh'))
    y1 = y.sub(source='lateraloccipital-lh')
    y2 = y.sub(source='cuneus-lh')
    kwa = dict(ds=ds, tstart=0.2, tstop=0.3, samples=100)

    resp = testnd.anova(y, "side*modality", pmin=0.05, parc='source', **kwa)
    c1p = resp.find_clusters(source='lateraloccipital-lh')
    c2p = resp.find_clusters(source='cuneus-lh')
    del c1p['p_parc', 'id']
    del c2p['p_parc', 'id']
    res1 = testnd.anova(y1, "side*modality", pmin=0.05, **kwa)
    c1 = res1.find_clusters()
    del c1['id']
    res2 = testnd.anova(y2, "side*modality", pmin=0.05, **kwa)
    c2 = res2.find_clusters()
    del c2['id']
    assert_dataset_equal(c1p, c1)
    assert_dataset_equal(c2p, c2)
    assert_array_equal(c2['p'], [
        0.85, 0.88, 0.97, 0.75, 0.99, 0.99, 0.98, 0.0, 0.12, 0.88, 0.25, 0.97,
        0.34, 0.96
    ])

    # without multiprocessing
    configure(n_workers=0)
    ress = testnd.anova(y, "side*modality", pmin=0.05, parc='source', **kwa)
    c1s = ress.find_clusters(source='lateraloccipital-lh')
    c2s = ress.find_clusters(source='cuneus-lh')
    del c1s['p_parc', 'id']
    del c2s['p_parc', 'id']
    assert_dataset_equal(c1s, c1)
    assert_dataset_equal(c2s, c2)
    configure(n_workers=True)

    # parc but single label
    resp2 = testnd.anova(y2, "side*modality", pmin=0.05, parc='source', **kwa)
    c2sp = resp2.find_clusters(source='cuneus-lh')
    del c2sp['p_parc', 'id']
    assert_dataset_equal(c2sp, c2)

    # not defined
    assert_raises(NotImplementedError,
                  testnd.anova,
                  y,
                  "side*modality",
                  tfce=True,
                  parc='source',
                  **kwa)
Example #2
0
def test_anova_parc():
    "Test ANOVA with parc argument and source space data"
    set_log_level('warning', 'mne')
    ds = datasets.get_mne_sample(src='ico', sub="side.isin(('L', 'R'))")
    y = ds['src'].sub(source=('lateraloccipital-lh', 'cuneus-lh'))
    y1 = y.sub(source='lateraloccipital-lh')
    y2 = y.sub(source='cuneus-lh')
    kwa = dict(ds=ds, tstart=0.2, tstop=0.3, samples=100)

    resp = testnd.anova(y, "side*modality", pmin=0.05, parc='source', **kwa)
    c1p = resp.find_clusters(source='lateraloccipital-lh')
    c2p = resp.find_clusters(source='cuneus-lh')
    del c1p['p_parc', 'id']
    del c2p['p_parc', 'id']
    res1 = testnd.anova(y1, "side*modality", pmin=0.05, **kwa)
    c1 = res1.find_clusters()
    del c1['id']
    res2 = testnd.anova(y2, "side*modality", pmin=0.05, **kwa)
    c2 = res2.find_clusters()
    del c2['id']
    assert_dataset_equal(c1p, c1)
    assert_dataset_equal(c2p, c2)
    assert_array_equal(c2['p'], [0.85, 0.88, 0.97, 0.75, 0.99, 0.99, 0.98, 0.0,
                                 0.12, 0.88, 0.25, 0.97, 0.34, 0.96])

    # without multiprocessing
    testnd.configure(0)
    ress = testnd.anova(y, "side*modality", pmin=0.05, parc='source', **kwa)
    c1s = ress.find_clusters(source='lateraloccipital-lh')
    c2s = ress.find_clusters(source='cuneus-lh')
    del c1s['p_parc', 'id']
    del c2s['p_parc', 'id']
    assert_dataset_equal(c1s, c1)
    assert_dataset_equal(c2s, c2)
    testnd.configure(-1)

    # parc but single label
    resp2 = testnd.anova(y2, "side*modality", pmin=0.05, parc='source', **kwa)
    c2sp = resp2.find_clusters(source='cuneus-lh')
    del c2sp['p_parc', 'id']
    assert_dataset_equal(c2sp, c2)

    # not defined
    assert_raises(NotImplementedError, testnd.anova, y, "side*modality",
                  tfce=True, parc='source', **kwa)
Example #3
0
def test_select_epochs():
    "Test Select-Epochs GUI Document"
    set_log_level('warning', 'mne')
    ds = datasets.get_mne_sample(sns=True)
    tempdir = TempDir()
    path = os.path.join(tempdir, 'rej.pickled')

    # create a file
    doc = Document(ds, 'meg')
    doc.set_path(path)
    doc.set_case(1, False, 'tag', None)
    doc.set_case(2, None, None, ['2'])
    doc.set_bad_channels([1])
    # check modifications
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)
    # save
    doc.save()

    # check the file
    ds_ = load.unpickle(path)
    eq_(doc.epochs.sensor.dimindex(ds_.info['bad_channels']), [1])

    # load the file
    ds = datasets.get_mne_sample(sns=True)
    doc = Document(ds, 'meg', path=path)
    # modification checks
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)

    # Test model
    # ==========
    ds = datasets.get_mne_sample(sns=True)
    doc = Document(ds, 'meg')
    model = Model(doc)

    # accept
    model.set_case(0, False, None, None)
    eq_(doc.accept[0], False)
    model.history.undo()
    eq_(doc.accept[0], True)
    model.history.redo()
    eq_(doc.accept[0], False)

    # interpolate
    model.toggle_interpolation(2, '3')
    eq_(doc.interpolate[2], ['3'])
    model.toggle_interpolation(2, '4')
    eq_(doc.interpolate[2], ['3', '4'])
    model.toggle_interpolation(2, '3')
    eq_(doc.interpolate[2], ['4'])
    model.toggle_interpolation(3, '3')
    eq_(doc.interpolate[2], ['4'])
    eq_(doc.interpolate[3], ['3'])
    model.history.undo()
    model.history.undo()
    eq_(doc.interpolate[2], ['3', '4'])
    eq_(doc.interpolate[3], [])
    model.history.redo()
    eq_(doc.interpolate[2], ['4'])

    # bad channels
    model.set_bad_channels([1])
    model.set_bad_channels([1, 10])
    eq_(doc.bad_channels, [1, 10])
    model.history.undo()
    eq_(doc.bad_channels, [1])
    model.history.redo()
    eq_(doc.bad_channels, [1, 10])

    # reload to reset
    model.load(path)
    # tests
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)
def test_select_epochs():
    "Test Select-Epochs GUI Document"
    set_log_level('warning', 'mne')
    ds = datasets.get_mne_sample(sns=True)
    tempdir = TempDir()
    path = os.path.join(tempdir, 'rej.pickled')

    # Test Document
    # =============
    # create a file
    doc = Document(ds, 'meg')
    doc.set_path(path)
    doc.set_case(1, False, 'tag', None)
    doc.set_case(2, None, None, ['2'])
    doc.set_bad_channels([1])
    # check modifications
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)
    # save
    doc.save()

    # check the file
    ds_ = load.unpickle(path)
    eq_(doc.epochs.sensor._array_index(ds_.info['bad_channels']), [1])

    # load the file
    ds = datasets.get_mne_sample(sns=True)
    doc = Document(ds, 'meg', path=path)
    # modification checks
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)

    # Test Model
    # ==========
    ds = datasets.get_mne_sample(sns=True)
    doc = Document(ds, 'meg')
    model = Model(doc)

    # accept
    model.set_case(0, False, None, None)
    eq_(doc.accept[0], False)
    model.history.undo()
    eq_(doc.accept[0], True)
    model.history.redo()
    eq_(doc.accept[0], False)

    # interpolate
    model.toggle_interpolation(2, '3')
    eq_(doc.interpolate[2], ['3'])
    model.toggle_interpolation(2, '4')
    eq_(doc.interpolate[2], ['3', '4'])
    model.toggle_interpolation(2, '3')
    eq_(doc.interpolate[2], ['4'])
    model.toggle_interpolation(3, '3')
    eq_(doc.interpolate[2], ['4'])
    eq_(doc.interpolate[3], ['3'])
    model.history.undo()
    model.history.undo()
    eq_(doc.interpolate[2], ['3', '4'])
    eq_(doc.interpolate[3], [])
    model.history.redo()
    eq_(doc.interpolate[2], ['4'])

    # bad channels
    model.set_bad_channels([1])
    model.set_bad_channels([1, 10])
    eq_(doc.bad_channels, [1, 10])
    model.history.undo()
    eq_(doc.bad_channels, [1])
    model.history.redo()
    eq_(doc.bad_channels, [1, 10])

    # reload to reset
    model.load(path)
    # tests
    eq_(doc.accept[1], False)
    eq_(doc.tag[1], 'tag')
    eq_(doc.interpolate[1], [])
    eq_(doc.interpolate[2], ['2'])
    eq_(doc.bad_channels, [1])
    assert_array_equal(doc.accept[2:], True)

    # Test GUI
    # ========
    frame = gui.select_epochs(ds)
    assert_false(frame.CanBackward())
    ok_(frame.CanForward())
    frame.OnForward(None)
def test_select_epochs():
    "Test Select-Epochs GUI Document"
    set_log_level('warning', 'mne')

    data_path = mne.datasets.testing.data_path()
    raw_path = join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif')
    raw = mne.io.Raw(raw_path, preload=True).pick_types('mag', stim=True)
    ds = load.fiff.events(raw)
    ds['meg'] = load.fiff.epochs(ds, tmax=0.1)

    tempdir = TempDir()
    path = join(tempdir, 'rej.pickled')

    # Test Document
    # =============
    # create a file
    doc = Document(ds, 'meg')
    doc.set_path(path)
    doc.set_case(1, False, 'tag', None)
    doc.set_case(2, None, None, ['2'])
    doc.set_bad_channels([1])
    # check modifications
    assert doc.accept[1] == False
    assert doc.tag[1] == 'tag'
    assert doc.interpolate[1] == []
    assert doc.interpolate[2] == ['2']
    assert doc.bad_channels == [1]
    assert_array_equal(doc.accept[2:], True)
    # save
    doc.save()

    # check the file
    ds_ = load.unpickle(path)
    assert doc.epochs.sensor._array_index(ds_.info['bad_channels']) == [1]

    # load the file
    doc = Document(ds, 'meg', path=path)
    # modification checks
    assert doc.accept[1] == False
    assert doc.tag[1] == 'tag'
    assert doc.interpolate[1] == []
    assert doc.interpolate[2] == ['2']
    assert doc.bad_channels == [1]
    assert_array_equal(doc.accept[2:], True)

    # Test Model
    # ==========
    doc = Document(ds, 'meg')
    model = Model(doc)

    # accept
    model.set_case(0, False, None, None)
    assert doc.accept[0] == False
    model.history.undo()
    assert doc.accept[0] == True
    model.history.redo()
    assert doc.accept[0] == False

    # interpolate
    model.toggle_interpolation(2, '3')
    assert doc.interpolate[2] == ['3']
    model.toggle_interpolation(2, '4')
    assert doc.interpolate[2] == ['3', '4']
    model.toggle_interpolation(2, '3')
    assert doc.interpolate[2] == ['4']
    model.toggle_interpolation(3, '3')
    assert doc.interpolate[2] == ['4']
    assert doc.interpolate[3] == ['3']
    model.history.undo()
    model.history.undo()
    assert doc.interpolate[2] == ['3', '4']
    assert doc.interpolate[3] == []
    model.history.redo()
    assert doc.interpolate[2] == ['4']

    # bad channels
    model.set_bad_channels([1])
    model.set_bad_channels([1, 10])
    assert doc.bad_channels == [1, 10]
    model.history.undo()
    assert doc.bad_channels == [1]
    model.history.redo()
    assert doc.bad_channels == [1, 10]

    # reload to reset
    model.load(path)
    # tests
    assert doc.accept[1] == False
    assert doc.tag[1] == 'tag'
    assert doc.interpolate[1] == []
    assert doc.interpolate[2] == ['2']
    assert doc.bad_channels == [1]
    assert_array_equal(doc.accept[2:], True)

    # Test GUI
    # ========
    frame = gui.select_epochs(ds, nplots=9)
    assert not frame.CanBackward()
    assert frame.CanForward()
    frame.OnForward(None)
    frame.SetVLim(1e-12)