Example #1
0
    def __init__(self, arch, pretrained=True):
        super().__init__()

        # load EfficientNet
        if arch == 'se_resnext50_32x4d':
            if pretrained:
                self.base = se_resnext50_32x4d()
            else:
                self.base = se_resnext50_32x4d(pretrained=None)
            self.nc = self.base.last_linear.in_features
        elif arch == 'inceptionv4':
            if pretrained:
                self.base = inceptionv4()
            else:
                self.base = inceptionv4(pretrained=None)
            self.nc = self.base.last_linear.in_features
        elif arch == 'inceptionresnetv2':
            if pretrained:
                self.base = inceptionresnetv2()
            else:
                self.base = inceptionresnetv2(pretrained=None)
            self.nc = self.base.last_linear.in_features
        elif 'efficientnet' in arch:
            if pretrained:
                self.base = EfficientNet.from_pretrained(model_name=arch)
            else:
                self.base = EfficientNet.from_name(model_name=arch)

            self.nc = self.base._fc.in_features

        self.logit = nn.Sequential(AdaptiveConcatPool2d(1), Flatten(),
                                   nn.BatchNorm1d(2 * self.nc),
                                   nn.Dropout(0.5),
                                   nn.Linear(2 * self.nc, 512), Mish(),
                                   nn.BatchNorm1d(512), nn.Dropout(0.5),
                                   nn.Linear(512, 1))
Example #2
0
    ])

    trainset = torchvision.datasets.ImageFolder(root + 'train',
                                                transform=train_transform)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=32)

    testset = torchvision.datasets.ImageFolder(root + 'val',
                                               transform=val_transform)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             num_workers=8)
    model = EfficientNet.from_name('efficientnet-b0')
    model = nn.DataParallel(model)
    model.cuda()
    # checkpoint = torch.load('/home/root1/PycharmProjects/ptt/checkpoint/69/box-can_0_0.8873.torch')
    # model.load_state_dict(checkpoint['net'])
    # del checkpoint
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                1e-2,
                                momentum=0.9,
                                weight_decay=1e-5)

    lr_schudule = ExponentialLR(optimizer, 0.97)

    def train(train_loader, model, criterion, optimizer):
Example #3
0
                                            transform=train_transform)
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=2)

    testset = torchvision.datasets.CIFAR10(root=root,
                                           train=False,
                                           download=True,
                                           transform=transform)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=batch_size,
                                             shuffle=False,
                                             num_workers=2)
    model = EfficientNet.from_name('efficientnet-b0',
                                   first_stride=False,
                                   ktype='oneone',
                                   cifar=False)
    model._fc = nn.Linear(model._fc.in_features, 10)
    model = nn.DataParallel(model)
    model.cuda()
    # checkpoint = torch.load('/home/root1/PycharmProjects/ptt/checkpoint/69/box-can_0_0.8873.torch')
    # model.load_state_dict(checkpoint['net'])
    # del checkpoint
    criterion = nn.CrossEntropyLoss().cuda()

    optimizer = torch.optim.SGD(model.parameters(),
                                init_lr,
                                momentum=0.9,
                                weight_decay=1e-5)

    lr_schudule = MultiStepLR(optimizer, lr_step)
Example #4
0
from sklearn.metrics import accuracy_score, roc_auc_score
from tqdm import tqdm
import time
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

opt = TestOptions().parse(print_options=False)
print("{} from {} model testing on {}".format(opt.arch, opt.source_dataset,
                                              opt.target_dataset))

gpu_id = opt.gpu_id
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
use_cuda = torch.cuda.is_available()
print("GPU device %d:" % (gpu_id), use_cuda)

model = EfficientNet.from_name(opt.arch, num_classes=opt.classes)

if opt.resume:
    pretrained = opt.resume
    print("=> using pre-trained model '{}'".format(pretrained))
    model.load_state_dict(torch.load(pretrained)['state_dict'])

model.to('cuda')
cudnn.benchmark = True
print('Total params: %.2fM' % (sum(p.numel()
                                   for p in model.parameters()) / 1000000.0))

criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), lr=opt.lr, momentum=opt.momentum)