Example #1
0
        def retrain_receiver(receiver_generator, sender):
            receiver = receiver_generator()
            game = core.SenderReceiverRnnReinforce(
                sender,
                receiver,
                loss,
                sender_entropy_coeff=0.0,
                receiver_entropy_coeff=0.0,
            )
            optimizer = torch.optim.Adam(receiver.parameters(), lr=opts.lr)
            early_stopper = EarlyStopperAccuracy(
                opts.early_stopping_thr, validation=True
            )

            trainer = core.Trainer(
                game=game,
                optimizer=optimizer,
                train_data=train_loader,
                validation_data=validation_loader,
                callbacks=[early_stopper, Evaluator(loaders, opts.device, freq=0)],
            )
            trainer.train(n_epochs=opts.n_epochs // 2)

            accs = [x[1]["acc"] for x in early_stopper.validation_stats]
            return accs
Example #2
0
def main(params):
    opts = get_params(params)
    print(opts)

    kwargs = {"num_workers": 1, "pin_memory": True} if opts.cuda else {}
    transform = transforms.ToTensor()

    train_dataset = datasets.MNIST("./data",
                                   train=True,
                                   download=True,
                                   transform=transform)
    test_dataset = datasets.MNIST("./data",
                                  train=False,
                                  download=False,
                                  transform=transform)
    n_classes = 10
    label_mapping = torch.LongTensor([x % n_classes for x in range(100)])

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               shuffle=True,
                                               **kwargs)
    train_loader = DoubleMnist(train_loader, label_mapping)

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=16 * 1024,
                                              shuffle=False,
                                              **kwargs)
    test_loader = DoubleMnist(test_loader, label_mapping)

    sender = Sender(
        vocab_size=opts.vocab_size,
        linear_channel=opts.linear_channel == 1,
        softmax_channel=opts.softmax_non_linearity,
    )
    receiver = Receiver(vocab_size=opts.vocab_size, n_classes=n_classes)

    if opts.softmax_non_linearity == 0 and opts.linear_channel == 0:
        sender = AlwaysRelaxedWrapper(sender, temperature=opts.temperature)

    game = core.SymbolGameGS(sender, receiver, diff_loss_symbol)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(
        game=game,
        optimizer=optimizer,
        train_data=train_loader,
        validation_data=test_loader,
        callbacks=[
            core.ConsoleLogger(as_json=True, print_train_loss=True),
            EarlyStopperAccuracy(opts.early_stopping_thr),
        ],
    )

    trainer.train(n_epochs=opts.n_epochs)
    core.close()
Example #3
0
def main(params):
    opts = get_params(params)
    print(json.dumps(vars(opts)))

    device = opts.device

    train_loader = OneHotLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.n_examples_per_epoch/opts.batch_size)

    test_loader = UniformLoader(n_bits=opts.n_bits, bits_s=opts.bits_s, bits_r=opts.bits_r)
    test_loader.batch = [x.to(device) for x in test_loader.batch]

    sender = Sender(n_bits=opts.n_bits, n_hidden=opts.sender_hidden,
                    vocab_size=opts.vocab_size)

    if opts.mode == 'gs':
        receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        sender = core.GumbelSoftmaxWrapper(agent=sender, temperature=opts.temperature)
        game = core.SymbolGameGS(sender, receiver, diff_loss)
    elif opts.mode == 'rf':
        sender = core.ReinforceWrapper(agent=sender)
        receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        receiver = core.ReinforceDeterministicWrapper(agent=receiver)
        game = core.SymbolGameReinforce(sender, receiver, diff_loss, sender_entropy_coeff=opts.sender_entropy_coeff)
    elif opts.mode == 'non_diff':
        sender = core.ReinforceWrapper(agent=sender)
        receiver = ReinforcedReceiver(n_bits=opts.n_bits, n_hidden=opts.receiver_hidden, vocab_size=opts.vocab_size)
        game = core.SymbolGameReinforce(sender, receiver, non_diff_loss,
                                        sender_entropy_coeff=opts.sender_entropy_coeff,
                                        receiver_entropy_coeff=opts.receiver_entropy_coeff)

    else:
        assert False, 'Unknown training mode'

    optimizer = torch.optim.Adam(
        [
            dict(params=sender.parameters(), lr=opts.sender_lr),
            dict(params=receiver.parameters(), lr=opts.receiver_lr)
        ])

    loss = game.loss

    intervention = CallbackEvaluator(test_loader, device=device, is_gs=opts.mode == 'gs', loss=loss, var_length=False,
                                     input_intervention=True)

    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr)

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, epoch_callback=intervention, as_json=True,
                           early_stopping=early_stopper)

    trainer.train(n_epochs=opts.n_epochs)

    core.close()
Example #4
0
def main(params):
    opts = get_params(params)
    print(opts)

    label_mapping = torch.LongTensor([x % opts.n_labels for x in range(100)])
    print('# label mapping', label_mapping.tolist())

    kwargs = {'num_workers': 1, 'pin_memory': True} if opts.cuda else {}
    transform = transforms.ToTensor()

    train_dataset = datasets.MNIST('./data',
                                   train=True,
                                   download=True,
                                   transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               shuffle=True,
                                               **kwargs)
    train_loader = DoubleMnist(train_loader, label_mapping)

    test_dataset = datasets.MNIST('./data', train=False, transform=transform)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=16 * 1024,
                                              shuffle=False,
                                              **kwargs)
    test_loader = DoubleMnist(test_loader, label_mapping)

    sender = Sender(vocab_size=opts.vocab_size)
    receiver = Receiver(vocab_size=opts.vocab_size,
                        n_classes=opts.n_labels,
                        n_hidden=opts.n_hidden)
    sender = core.GumbelSoftmaxWrapper(sender, temperature=opts.temperature)

    game = core.SymbolGameGS(sender, receiver, diff_loss_symbol)

    optimizer = core.build_optimizer(game.parameters())

    intervention = CallbackEvaluator(test_loader,
                                     device=opts.device,
                                     loss=game.loss,
                                     is_gs=True,
                                     var_length=False,
                                     input_intervention=False)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[
                               core.ConsoleLogger(as_json=True),
                               EarlyStopperAccuracy(opts.early_stopping_thr),
                               intervention
                           ])

    trainer.train(n_epochs=opts.n_epochs)
    core.close()
Example #5
0
def main(params):
    opts = get_params(params)
    print(json.dumps(vars(opts)))

    kwargs = {'num_workers': 1, 'pin_memory': True} if opts.cuda else {}
    transform = transforms.ToTensor()

    train_dataset = datasets.MNIST('./data',
                                   train=True,
                                   download=True,
                                   transform=transform)
    test_dataset = datasets.MNIST('./data',
                                  train=False,
                                  download=False,
                                  transform=transform)
    n_classes = 10

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=opts.batch_size,
                                               shuffle=True,
                                               **kwargs)

    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=opts.batch_size,
                                              shuffle=False,
                                              **kwargs)

    sender = Sender(vocab_size=opts.vocab_size,
                    linear_channel=opts.linear_channel == 1,
                    softmax_channel=opts.softmax_non_linearity)
    receiver = Receiver(vocab_size=opts.vocab_size, n_classes=n_classes)

    if opts.softmax_non_linearity == 0 and opts.linear_channel == 0:
        sender = AlwaysRelaxedWrapper(sender, temperature=opts.temperature)

    game = core.SymbolGameGS(sender, receiver, diff_loss_symbol)

    optimizer = core.build_optimizer(game.parameters())

    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=test_loader,
                           as_json=True,
                           early_stopping=early_stopper,
                           print_train_loss=True)

    trainer.train(n_epochs=opts.n_epochs)
    core.close()
Example #6
0
def main(params):
    opts = get_params(params)
    print(json.dumps(vars(opts)))

    kwargs = {'num_workers': 1, 'pin_memory': True} if opts.cuda else {}
    transform = transforms.ToTensor()

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
           transform=transform),
           batch_size=opts.batch_size, shuffle=True, **kwargs)

    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=False, transform=transform),
           batch_size=16 * 1024, shuffle=False, **kwargs)

    n_classes = 10

    binarize = False

    test_loader = SplitImages(TakeFirstLoader(test_loader, n=1), rows_receiver=opts.receiver_rows,
                              rows_sender=opts.sender_rows, binarize=binarize, receiver_bottom=True)
    train_loader = SplitImages(train_loader, rows_sender=opts.sender_rows, rows_receiver=opts.receiver_rows,
                               binarize=binarize, receiver_bottom=True)

    sender = Sender(vocab_size=opts.vocab_size)
    receiver = Receiver(vocab_size=opts.vocab_size, n_classes=n_classes)
    sender = core.GumbelSoftmaxWrapper(sender, temperature=opts.temperature)

    game = core.SymbolGameGS(sender, receiver, diff_loss_symbol)

    optimizer = core.build_optimizer(game.parameters())

    intervention = CallbackEvaluator(test_loader, device=opts.device, loss=game.loss,
                                     is_gs=True,
                                     var_length=False,
                                     input_intervention=True)

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[core.ConsoleLogger(as_json=True),
                                      EarlyStopperAccuracy(opts.early_stopping_thr),
                                      intervention])

    trainer.train(n_epochs=opts.n_epochs)
    core.close()
Example #7
0
def main(params):
    opts = get_params(params)
    print(json.dumps(vars(opts)))

    kwargs = {'num_workers': 1, 'pin_memory': True} if opts.cuda else {}
    transform = transforms.ToTensor()

    train_dataset = datasets.MNIST('./data', train=True, download=True,
                   transform=transform)
    test_dataset = datasets.MNIST('./data', train=False, download=False,
                   transform=transform)
    n_classes = 10

    corrupt_labels_(dataset=train_dataset, p_corrupt=opts.p_corrupt, seed=opts.random_seed+1)

    train_loader = torch.utils.data.DataLoader(train_dataset,
        batch_size=opts.batch_size, shuffle=True, **kwargs)

    test_loader = torch.utils.data.DataLoader(test_dataset,
        batch_size=opts.batch_size, shuffle=False, **kwargs)

    deeper_alice = opts.deeper_alice == 1 and opts.deeper == 1
    deeper_bob = opts.deeper_alice != 1 and opts.deeper == 1

    sender = Sender(vocab_size=opts.vocab_size, deeper=deeper_alice, linear_channel=opts.linear_channel == 1,
                    softmax_channel=opts.softmax_non_linearity == 1)
    receiver = Receiver(vocab_size=opts.vocab_size, n_classes=n_classes, deeper=deeper_bob)

    if opts.softmax_non_linearity != 1 and opts.linear_channel != 1:
        sender = AlwaysRelaxedWrapper(sender, temperature=opts.temperature)

    game = core.SymbolGameGS(sender, receiver, diff_loss_symbol)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[core.ConsoleLogger(as_json=True, print_train_loss=True),
                                      EarlyStopperAccuracy(opts.early_stopping_thr)]
                           )

    trainer.train(n_epochs=opts.n_epochs)
    core.close()
Example #8
0
def main(params):
    print(torch.cuda.is_available())
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features+1, dtype=np.float32)
    #elif opts.probs == "creneau":
    #    ones = np.ones(int(opts.n_features/2))
    #    tens = 10*np.ones(opts.n_features-int(opts.n_features/2))
    #    probs = np.concatenate((tens,ones),axis=0)
    #elif opts.probs == "toy":
    #    fives = 5*np.ones(int(opts.n_features/10))
    #    ones = np.ones(opts.n_features-int(opts.n_features/10))
    #    probs = np.concatenate((fives,ones),axis=0)
    #elif opts.probs == "escalier":
    #    ones = np.ones(int(opts.n_features/4))
    #    tens = 10*np.ones(int(opts.n_features/4))
    #    huns = 100*np.ones(int(opts.n_features/4))
    #    thous = 1000*np.ones(opts.n_features-3*int(opts.n_features/4))
    #    probs = np.concatenate((thous,huns,tens,ones),axis=0)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')], dtype=np.float32)

    probs /= probs.sum()

    print('the probs are: ', probs, flush=True)

    train_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch, probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == 'transformer':
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(agent=sender, vocab_size=opts.vocab_size,
                                                 embed_dim=opts.sender_embedding, max_len=opts.max_len,
                                                 num_layers=opts.sender_num_layers, num_heads=opts.sender_num_heads,
                                                 hidden_size=opts.sender_hidden,
                                                 force_eos=opts.force_eos,
                                                 generate_style=opts.sender_generate_style,
                                                 causal=opts.causal_sender)
    else:
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(sender,
                                   opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)
    if opts.receiver_cell == 'transformer':
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_embedding)
        receiver = core.TransformerReceiverDeterministic(receiver, opts.vocab_size, opts.max_len,
                                                         opts.receiver_embedding, opts.receiver_num_heads, opts.receiver_hidden,
                                                         opts.receiver_num_layers, causal=opts.causal_receiver)
    else:

        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)

        if not opts.impatient:
          receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
          receiver = core.RnnReceiverDeterministic(receiver, opts.vocab_size, opts.receiver_embedding,
                                                 opts.receiver_hidden, cell=opts.receiver_cell,
                                                 num_layers=opts.receiver_num_layers)
        else:
          receiver = Receiver(n_features=opts.receiver_hidden, n_hidden=opts.vocab_size)
          # If impatient 1
          receiver = RnnReceiverImpatient(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_features=opts.n_features)
          # If impatient 2
          #receiver = RnnReceiverImpatient2(receiver, opts.vocab_size, opts.receiver_embedding,
        #                                         opts.receiver_hidden, cell=opts.receiver_cell,
        #                                         num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_features=opts.n_features)

    if not opts.impatient:
        game = core.SenderReceiverRnnReinforce(sender, receiver, loss, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)
    else:
        game = SenderImpatientReceiverRnnReinforce(sender, receiver, loss_impatient, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])


    for epoch in range(int(opts.n_epochs)):

        print("Epoch: "+str(epoch))

        if epoch%100==0:
          trainer.optimizer.defaults["lr"]/=2

        trainer.train(n_epochs=1)
        if opts.checkpoint_dir:
            trainer.save_checkpoint(name=f'{opts.name}_vocab{opts.vocab_size}_rs{opts.random_seed}_lr{opts.lr}_shid{opts.sender_hidden}_rhid{opts.receiver_hidden}_sentr{opts.sender_entropy_coeff}_reg{opts.length_cost}_max_len{opts.max_len}')

        if not opts.impatient:
            acc_vec,messages=dump(trainer.game, opts.n_features, device, False,epoch)
        else:
            acc_vec,messages=dump_impatient(trainer.game, opts.n_features, device, False,epoch)

        # ADDITION TO SAVE MESSAGES
        all_messages=[]
        for x in messages:
            x = x.cpu().numpy()
            all_messages.append(x)
        all_messages = np.asarray(all_messages)

        if epoch%50==0:
            torch.save(sender.state_dict(), opts.dir_save+"/sender/sender_weights"+str(epoch)+".pth")
            torch.save(receiver.state_dict(), opts.dir_save+"/receiver/receiver_weights"+str(epoch)+".pth")
            #print(acc_vec)

        np.save(opts.dir_save+'/messages/messages_'+str((epoch))+'.npy', all_messages)
        np.save(opts.dir_save+'/accuracy/accuracy_'+str((epoch))+'.npy', acc_vec)

    core.close()
Example #9
0
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features+1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')], dtype=np.float32)
    probs /= probs.sum()

    train_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch, probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == 'transformer':
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(agent=sender, vocab_size=opts.vocab_size,
                                                 embed_dim=opts.sender_embedding, max_len=opts.max_len,
                                                 num_layers=opts.sender_num_layers, num_heads=opts.sender_num_heads,
                                                 hidden_size=opts.sender_hidden,
                                                 force_eos=opts.force_eos,
                                                 generate_style=opts.sender_generate_style,
                                                 causal=opts.causal_sender)
    else:
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(sender,
                                   opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)
    if opts.receiver_cell == 'transformer':
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_embedding)
        receiver = core.TransformerReceiverDeterministic(receiver, opts.vocab_size, opts.max_len,
                                                         opts.receiver_embedding, opts.receiver_num_heads, opts.receiver_hidden,
                                                         opts.receiver_num_layers, causal=opts.causal_receiver)
    else:

        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)

        if not opts.impatient:
          receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
          receiver = core.RnnReceiverDeterministic(receiver, opts.vocab_size, opts.receiver_embedding,
                                                 opts.receiver_hidden, cell=opts.receiver_cell,
                                                 num_layers=opts.receiver_num_layers)
        else:
          receiver = Receiver(n_features=opts.receiver_hidden, n_hidden=opts.vocab_size)
          # If impatient 1
          receiver = RnnReceiverImpatient(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_features=opts.n_features)
          # If impatient 2
          #receiver = RnnReceiverImpatient2(receiver, opts.vocab_size, opts.receiver_embedding,
        #                                         opts.receiver_hidden, cell=opts.receiver_cell,
        #                                         num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_features=opts.n_features)

    sender.load_state_dict(torch.load(opts.sender_weights,map_location=torch.device('cpu')))
    receiver.load_state_dict(torch.load(opts.receiver_weights,map_location=torch.device('cpu')))

    if not opts.impatient:
        game = core.SenderReceiverRnnReinforce(sender, receiver, loss, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen)
    else:
        game = SenderImpatientReceiverRnnReinforce(sender, receiver, loss, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    # Test impose message

    if not opts.impatient:
        acc_vec,messages=dump(trainer.game, opts.n_features, device, False)
    else:
        acc_vec,messages=dump_impatient(trainer.game, opts.n_features, device, False,save_dir=opts.save_dir)

    all_messages=[]
    for x in messages:
        x = x.cpu().numpy()
        all_messages.append(x)
    all_messages = np.asarray(all_messages)

    messages=-1*np.ones((opts.n_features,opts.max_len))

    for i in range(len(all_messages)):
      for j in range(all_messages[i].shape[0]):
        messages[i,j]=all_messages[i][j]

    np.save(opts.save_dir+"messages_analysis.npy",messages)

    core.close()
Example #10
0
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features+1, dtype=np.float32)
    elif opts.probs == 'perso':
        probs = opts.n_features+1 - np.arange(1, opts.n_features+1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')], dtype=np.float32)
    probs /= probs.sum()

    print('the probs are: ', probs, flush=True)

    train_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch, probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == 'transformer':
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(agent=sender, vocab_size=opts.vocab_size,
                                                 embed_dim=opts.sender_embedding, max_len=opts.max_len,
                                                 num_layers=opts.sender_num_layers, num_heads=opts.sender_num_heads,
                                                 hidden_size=opts.sender_hidden,
                                                 force_eos=opts.force_eos,
                                                 generate_style=opts.sender_generate_style,
                                                 causal=opts.causal_sender)
    else:
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(sender,
                                   opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)
    if opts.receiver_cell == 'transformer':
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_embedding)
        receiver = core.TransformerReceiverDeterministic(receiver, opts.vocab_size, opts.max_len,
                                                         opts.receiver_embedding, opts.receiver_num_heads, opts.receiver_hidden,
                                                         opts.receiver_num_layers, causal=opts.causal_receiver)
    else:
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
        receiver = core.RnnReceiverDeterministic(receiver, opts.vocab_size, opts.receiver_embedding,
                                             opts.receiver_hidden, cell=opts.receiver_cell,
                                             num_layers=opts.receiver_num_layers)

    game = core.SenderReceiverRnnReinforce(sender, receiver, loss, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr),
                                      core.ConsoleLogger(as_json=True, print_train_loss=True)])

    """ mode accuracy chope a chaque epoch
    accs=[]
    all_messages,acc=dump(trainer.game, opts.n_features, device, False)
    np.save('messages_0.npy', all_messages)
    accs.append(acc)
    for i in range(int(opts.n_epochs)):
        print(i)
        trainer.train(n_epochs=1)
        all_messages,acc=dump(trainer.game, opts.n_features, device, False)
        np.save('messages_'+str((i+1))+'.npy', all_messages)
        accs.append(acc)
    np.save('accuracy.npy',accs)
    """

    trainer.train(n_epochs=opts.n_epochs)

    #if opts.checkpoint_dir:
        #trainer.save_checkpoint(name=f'{opts.name}_vocab{opts.vocab_size}_rs{opts.random_seed}_lr{opts.lr}_shid{opts.sender_hidden}_rhid{opts.receiver_hidden}_sentr{opts.sender_entropy_coeff}_reg{opts.length_cost}_max_len{opts.max_len}')
    #for i in range(30):
    #        for k in range(30):
    #        if i<k:
    #            all_messages=dump(trainer.game, opts.n_features, device, False,pos_m=i,pos_M=k)



    all_messages=dump(trainer.game, opts.n_features, device, False)


    print(all_messages)

    #freq=np.zeros(30)
    #for message in all_messages[0]:
    #        if i in range(message.shape[0]):
    #        freq[int(message[i])]+=1
    #print(freq)

    core.close()
Example #11
0
def main(params):
    import copy
    opts = get_params(params)
    device = opts.device

    train_loader, validation_loader = get_dsprites_dataloader(
        path_to_data='egg/zoo/data_loaders/data/dsprites.npz',
        batch_size=opts.batch_size,
        subsample=opts.subsample,
        image=False)

    n_dim = opts.n_attributes

    if opts.receiver_cell in ['lstm', 'rnn', 'gru']:
        receiver = Receiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim)
        receiver = core.RnnReceiverDeterministic(receiver,
                                                 opts.vocab_size + 1,
                                                 opts.receiver_emb,
                                                 opts.receiver_hidden,
                                                 cell=opts.receiver_cell)
    else:
        raise ValueError(f'Unknown receiver cell, {opts.receiver_cell}')

    if opts.sender_cell in ['lstm', 'rnn', 'gru']:
        sender = Sender(n_inputs=n_dim, n_hidden=opts.sender_hidden)
        sender = core.RnnSenderReinforce(agent=sender,
                                         vocab_size=opts.vocab_size,
                                         embed_dim=opts.sender_emb,
                                         hidden_size=opts.sender_hidden,
                                         max_len=opts.max_len,
                                         force_eos=False,
                                         cell=opts.sender_cell)
    else:
        raise ValueError(f'Unknown sender cell, {opts.sender_cell}')

    sender = PlusOneWrapper(sender)
    loss = DiffLoss(opts.n_attributes, opts.n_values)

    baseline = {
        'no': core.baselines.NoBaseline,
        'mean': core.baselines.MeanBaseline,
        'builtin': core.baselines.BuiltInBaseline
    }[opts.baseline]

    game = core.SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=0.0,
        length_cost=0.0,
        baseline_type=baseline)
    optimizer = torch.optim.Adam(game.parameters(), lr=opts.lr)

    latent_values, _ = zip(*[batch for batch in validation_loader])
    latent_values = latent_values[0]

    metrics_evaluator = Metrics(latent_values,
                                opts.device,
                                opts.n_attributes,
                                opts.n_values,
                                opts.vocab_size + 1,
                                freq=opts.stats_freq)

    loaders = []
    #loaders.append(("generalization hold out", generalization_holdout_loader, DiffLoss(
    #opts.n_attributes, opts.n_values, generalization=True)))
    loaders.append(("uniform holdout", validation_loader,
                    DiffLoss(opts.n_attributes, opts.n_values)))

    holdout_evaluator = Evaluator(loaders, opts.device, freq=0)
    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr,
                                         validation=True)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=validation_loader,
                           callbacks=[
                               core.ConsoleLogger(as_json=True,
                                                  print_train_loss=False),
                               early_stopper, metrics_evaluator,
                               holdout_evaluator
                           ])
    trainer.train(n_epochs=opts.n_epochs)

    last_epoch_interaction = early_stopper.validation_stats[-1][1]
    validation_acc = last_epoch_interaction.aux['acc'].mean()

    uniformtest_acc = holdout_evaluator.results['uniform holdout']['acc']

    # Train new agents
    if validation_acc > 0.99:

        def _set_seed(seed):
            import random
            import numpy as np

            random.seed(seed)
            torch.manual_seed(seed)
            np.random.seed(seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed_all(seed)

        core.get_opts().preemptable = False
        core.get_opts().checkpoint_path = None

        # freeze Sender and probe how fast a simple Receiver will learn the thing
        def retrain_receiver(receiver_generator, sender):
            receiver = receiver_generator()
            game = core.SenderReceiverRnnReinforce(sender,
                                                   receiver,
                                                   loss,
                                                   sender_entropy_coeff=0.0,
                                                   receiver_entropy_coeff=0.0)
            optimizer = torch.optim.Adam(receiver.parameters(), lr=opts.lr)
            early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr,
                                                 validation=True)

            trainer = core.Trainer(game=game,
                                   optimizer=optimizer,
                                   train_data=train_loader,
                                   validation_data=validation_loader,
                                   callbacks=[
                                       early_stopper,
                                       Evaluator(loaders, opts.device, freq=0)
                                   ])
            trainer.train(n_epochs=opts.n_epochs // 2)

            accs = [x[1]['acc'] for x in early_stopper.validation_stats]
            return accs

        frozen_sender = Freezer(copy.deepcopy(sender))

        def gru_receiver_generator():            return \
core.RnnReceiverDeterministic(Receiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=opts.receiver_hidden, cell='gru')

        def small_gru_receiver_generator():            return \
core.RnnReceiverDeterministic(
                Receiver(n_hidden=100, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=100, cell='gru')

        def tiny_gru_receiver_generator():            return \
core.RnnReceiverDeterministic(
                Receiver(n_hidden=50, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=50, cell='gru')

        def nonlinear_receiver_generator():            return \
NonLinearReceiver(n_outputs=n_dim, vocab_size=opts.vocab_size + 1,
            max_length=opts.max_len, n_hidden=opts.receiver_hidden)

        for name, receiver_generator in [
            ('gru', gru_receiver_generator),
            ('nonlinear', nonlinear_receiver_generator),
            ('tiny_gru', tiny_gru_receiver_generator),
            ('small_gru', small_gru_receiver_generator),
        ]:

            for seed in range(17, 17 + 3):
                _set_seed(seed)
                accs = retrain_receiver(receiver_generator, frozen_sender)
                accs += [1.0] * (opts.n_epochs // 2 - len(accs))
                auc = sum(accs)
                print(
                    json.dumps({
                        "mode": "reset",
                        "seed": seed,
                        "receiver_name": name,
                        "auc": auc
                    }))

    print('---End--')

    core.close()
Example #12
0
def main(params):
    import copy

    opts = get_params(params)
    device = opts.device

    full_data = enumerate_attribute_value(opts.n_attributes, opts.n_values)
    if opts.density_data > 0:
        sampled_data = select_subset_V2(
            full_data, opts.density_data, opts.n_attributes, opts.n_values
        )
        full_data = copy.deepcopy(sampled_data)

    train, generalization_holdout = split_holdout(full_data)
    train, uniform_holdout = split_train_test(train, 0.1)

    generalization_holdout, train, uniform_holdout, full_data = [
        one_hotify(x, opts.n_attributes, opts.n_values)
        for x in [generalization_holdout, train, uniform_holdout, full_data]
    ]

    train, validation = ScaledDataset(train, opts.data_scaler), ScaledDataset(train, 1)

    generalization_holdout, uniform_holdout, full_data = (
        ScaledDataset(generalization_holdout),
        ScaledDataset(uniform_holdout),
        ScaledDataset(full_data),
    )
    generalization_holdout_loader, uniform_holdout_loader, full_data_loader = [
        DataLoader(x, batch_size=opts.batch_size)
        for x in [generalization_holdout, uniform_holdout, full_data]
    ]

    train_loader = DataLoader(train, batch_size=opts.batch_size)
    validation_loader = DataLoader(validation, batch_size=len(validation))

    n_dim = opts.n_attributes * opts.n_values

    if opts.receiver_cell in ["lstm", "rnn", "gru"]:
        receiver = Receiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim)
        receiver = core.RnnReceiverDeterministic(
            receiver,
            opts.vocab_size + 1,
            opts.receiver_emb,
            opts.receiver_hidden,
            cell=opts.receiver_cell,
        )
    else:
        raise ValueError(f"Unknown receiver cell, {opts.receiver_cell}")

    if opts.sender_cell in ["lstm", "rnn", "gru"]:
        sender = Sender(n_inputs=n_dim, n_hidden=opts.sender_hidden)
        sender = core.RnnSenderReinforce(
            agent=sender,
            vocab_size=opts.vocab_size,
            embed_dim=opts.sender_emb,
            hidden_size=opts.sender_hidden,
            max_len=opts.max_len,
            cell=opts.sender_cell,
        )
    else:
        raise ValueError(f"Unknown sender cell, {opts.sender_cell}")

    sender = PlusOneWrapper(sender)
    loss = DiffLoss(opts.n_attributes, opts.n_values)

    baseline = {
        "no": core.baselines.NoBaseline,
        "mean": core.baselines.MeanBaseline,
        "builtin": core.baselines.BuiltInBaseline,
    }[opts.baseline]

    game = core.SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=0.0,
        length_cost=0.0,
        baseline_type=baseline,
    )
    optimizer = torch.optim.Adam(game.parameters(), lr=opts.lr)

    metrics_evaluator = Metrics(
        validation.examples,
        opts.device,
        opts.n_attributes,
        opts.n_values,
        opts.vocab_size + 1,
        freq=opts.stats_freq,
    )

    loaders = []
    loaders.append(
        (
            "generalization hold out",
            generalization_holdout_loader,
            DiffLoss(opts.n_attributes, opts.n_values, generalization=True),
        )
    )
    loaders.append(
        (
            "uniform holdout",
            uniform_holdout_loader,
            DiffLoss(opts.n_attributes, opts.n_values),
        )
    )

    holdout_evaluator = Evaluator(loaders, opts.device, freq=0)
    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr, validation=True)

    trainer = core.Trainer(
        game=game,
        optimizer=optimizer,
        train_data=train_loader,
        validation_data=validation_loader,
        callbacks=[
            core.ConsoleLogger(as_json=True, print_train_loss=False),
            early_stopper,
            metrics_evaluator,
            holdout_evaluator,
        ],
    )
    trainer.train(n_epochs=opts.n_epochs)

    last_epoch_interaction = early_stopper.validation_stats[-1][1]
    validation_acc = last_epoch_interaction.aux["acc"].mean()

    uniformtest_acc = holdout_evaluator.results["uniform holdout"]["acc"]

    # Train new agents
    if validation_acc > 0.99:

        def _set_seed(seed):
            import random

            import numpy as np

            random.seed(seed)
            torch.manual_seed(seed)
            np.random.seed(seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed_all(seed)

        core.get_opts().preemptable = False
        core.get_opts().checkpoint_path = None

        # freeze Sender and probe how fast a simple Receiver will learn the thing
        def retrain_receiver(receiver_generator, sender):
            receiver = receiver_generator()
            game = core.SenderReceiverRnnReinforce(
                sender,
                receiver,
                loss,
                sender_entropy_coeff=0.0,
                receiver_entropy_coeff=0.0,
            )
            optimizer = torch.optim.Adam(receiver.parameters(), lr=opts.lr)
            early_stopper = EarlyStopperAccuracy(
                opts.early_stopping_thr, validation=True
            )

            trainer = core.Trainer(
                game=game,
                optimizer=optimizer,
                train_data=train_loader,
                validation_data=validation_loader,
                callbacks=[early_stopper, Evaluator(loaders, opts.device, freq=0)],
            )
            trainer.train(n_epochs=opts.n_epochs // 2)

            accs = [x[1]["acc"] for x in early_stopper.validation_stats]
            return accs

        frozen_sender = Freezer(copy.deepcopy(sender))

        def gru_receiver_generator():
            return core.RnnReceiverDeterministic(
                Receiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim),
                opts.vocab_size + 1,
                opts.receiver_emb,
                hidden_size=opts.receiver_hidden,
                cell="gru",
            )

        def small_gru_receiver_generator():
            return core.RnnReceiverDeterministic(
                Receiver(n_hidden=100, n_outputs=n_dim),
                opts.vocab_size + 1,
                opts.receiver_emb,
                hidden_size=100,
                cell="gru",
            )

        def tiny_gru_receiver_generator():
            return core.RnnReceiverDeterministic(
                Receiver(n_hidden=50, n_outputs=n_dim),
                opts.vocab_size + 1,
                opts.receiver_emb,
                hidden_size=50,
                cell="gru",
            )

        def nonlinear_receiver_generator():
            return NonLinearReceiver(
                n_outputs=n_dim,
                vocab_size=opts.vocab_size + 1,
                max_length=opts.max_len,
                n_hidden=opts.receiver_hidden,
            )

        for name, receiver_generator in [
            ("gru", gru_receiver_generator),
            ("nonlinear", nonlinear_receiver_generator),
            ("tiny_gru", tiny_gru_receiver_generator),
            ("small_gru", small_gru_receiver_generator),
        ]:

            for seed in range(17, 17 + 3):
                _set_seed(seed)
                accs = retrain_receiver(receiver_generator, frozen_sender)
                accs += [1.0] * (opts.n_epochs // 2 - len(accs))
                auc = sum(accs)
                print(
                    json.dumps(
                        {
                            "mode": "reset",
                            "seed": seed,
                            "receiver_name": name,
                            "auc": auc,
                        }
                    )
                )

    print("---End--")

    core.close()
Example #13
0
File: train.py Project: Slowika/EGG
def main(params):
    opts = get_params(params)
    print(opts, flush=True)

    # For compatibility, after https://github.com/facebookresearch/EGG/pull/130
    # the meaning of `length` changed a bit. Before it included the EOS symbol; now
    # it doesn't. To ensure that hyperparameters/CL arguments do not change,
    # we subtract it here.
    opts.max_len -= 1

    device = opts.device

    if opts.probs == "uniform":
        probs = np.ones(opts.n_features)
    elif opts.probs == "powerlaw":
        probs = 1 / np.arange(1, opts.n_features + 1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(",")], dtype=np.float32)
    probs /= probs.sum()

    print("the probs are: ", probs, flush=True)

    train_loader = OneHotLoader(
        n_features=opts.n_features,
        batch_size=opts.batch_size,
        batches_per_epoch=opts.batches_per_epoch,
        probs=probs,
    )

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == "transformer":
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(
            agent=sender,
            vocab_size=opts.vocab_size,
            embed_dim=opts.sender_embedding,
            max_len=opts.max_len,
            num_layers=opts.sender_num_layers,
            num_heads=opts.sender_num_heads,
            hidden_size=opts.sender_hidden,
            generate_style=opts.sender_generate_style,
            causal=opts.causal_sender,
        )
    else:
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(
            sender,
            opts.vocab_size,
            opts.sender_embedding,
            opts.sender_hidden,
            cell=opts.sender_cell,
            max_len=opts.max_len,
            num_layers=opts.sender_num_layers,
        )
    if opts.receiver_cell == "transformer":
        receiver = Receiver(
            n_features=opts.n_features, n_hidden=opts.receiver_embedding
        )
        receiver = core.TransformerReceiverDeterministic(
            receiver,
            opts.vocab_size,
            opts.max_len,
            opts.receiver_embedding,
            opts.receiver_num_heads,
            opts.receiver_hidden,
            opts.receiver_num_layers,
            causal=opts.causal_receiver,
        )
    else:
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
        receiver = core.RnnReceiverDeterministic(
            receiver,
            opts.vocab_size,
            opts.receiver_embedding,
            opts.receiver_hidden,
            cell=opts.receiver_cell,
            num_layers=opts.receiver_num_layers,
        )

    empty_logger = LoggingStrategy.minimal()
    game = core.SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=opts.receiver_entropy_coeff,
        train_logging_strategy=empty_logger,
        length_cost=opts.length_cost,
    )

    optimizer = core.build_optimizer(game.parameters())

    callbacks = [
        EarlyStopperAccuracy(opts.early_stopping_thr),
        core.ConsoleLogger(as_json=True, print_train_loss=True),
    ]

    if opts.checkpoint_dir:
        checkpoint_name = f"{opts.name}_vocab{opts.vocab_size}_rs{opts.random_seed}_lr{opts.lr}_shid{opts.sender_hidden}_rhid{opts.receiver_hidden}_sentr{opts.sender_entropy_coeff}_reg{opts.length_cost}_max_len{opts.max_len}"
        callbacks.append(
            core.CheckpointSaver(
                checkpoint_path=opts.checkpoint_dir, prefix=checkpoint_name
            )
        )

    trainer = core.Trainer(
        game=game,
        optimizer=optimizer,
        train_data=train_loader,
        validation_data=test_loader,
        callbacks=callbacks,
    )

    trainer.train(n_epochs=opts.n_epochs)

    game.logging_strategy = LoggingStrategy.maximal()  # now log everything
    dump(trainer.game, opts.n_features, device, False)
    core.close()
Example #14
0
def main(params):
    import copy
    opts = get_params(params)
    device = opts.device

    full_data = enumerate_attribute_value(opts.n_attributes, opts.n_values)
    if opts.density_data > 0:
        sampled_data = select_subset_V2(full_data, opts.density_data,
                                        opts.n_attributes, opts.n_values)
        full_data = copy.deepcopy(sampled_data)

    train, generalization_holdout = split_holdout(full_data)
    train, uniform_holdout = split_train_test(train, 0.1)

    generalization_holdout, train, uniform_holdout, full_data = [
        one_hotify(x, opts.n_attributes, opts.n_values)
        for x in [generalization_holdout, train, uniform_holdout, full_data]
    ]

    train, validation = ScaledDataset(train, opts.data_scaler), ScaledDataset(
        train, 1)

    generalization_holdout, uniform_holdout, full_data = ScaledDataset(
        generalization_holdout), ScaledDataset(uniform_holdout), ScaledDataset(
            full_data)
    generalization_holdout_loader, uniform_holdout_loader, full_data_loader = [
        DataLoader(x, batch_size=opts.batch_size)
        for x in [generalization_holdout, uniform_holdout, full_data]
    ]

    train_loader = DataLoader(train, batch_size=opts.batch_size)
    validation_loader = DataLoader(validation, batch_size=len(validation))

    n_dim = opts.n_attributes * opts.n_values

    if opts.receiver_cell in ['lstm', 'rnn', 'gru']:
        receiver = MMReceiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim)
        receiver = core.MMRnnReceiverDeterministic(receiver,
                                                   opts.vocab_size + 1,
                                                   opts.receiver_emb,
                                                   opts.receiver_hidden,
                                                   cell=opts.receiver_cell)
    else:
        raise ValueError(f'Unknown receiver cell, {opts.receiver_cell}')

    if opts.sender_cell in ['lstm', 'rnn', 'gru']:
        sender = MMSender(n_inputs=n_dim, n_hidden=opts.sender_hidden)
        s1 = SplitWrapper(sender, 0)
        s2 = SplitWrapper(sender, 1)
        sender1 = core.RnnSenderReinforce(agent=s1,
                                          vocab_size=opts.vocab_size,
                                          embed_dim=opts.sender_emb,
                                          hidden_size=opts.sender_hidden,
                                          max_len=opts.max_len,
                                          force_eos=False,
                                          cell=opts.sender_cell)
        sender1 = PlusNWrapper(sender1, 1)
        sender2 = core.RnnSenderReinforce(agent=s2,
                                          vocab_size=opts.vocab_size,
                                          embed_dim=opts.sender_emb,
                                          hidden_size=opts.sender_hidden,
                                          max_len=opts.max_len,
                                          force_eos=False,
                                          cell=opts.sender_cell)
        # sender2 = PlusNWrapper(sender2, opts.vocab_size + 1)
        sender2 = PlusNWrapper(sender2, 1)
        sender = CombineMMRnnSenderReinforce(sender1, sender2)
    else:
        raise ValueError(f'Unknown sender cell, {opts.sender_cell}')

    loss = DiffLoss(opts.n_attributes, opts.n_values)

    baseline = {
        'no': core.baselines.NoBaseline,
        'mean': core.baselines.MeanBaseline,
        'builtin': core.baselines.BuiltInBaseline
    }[opts.baseline]

    game = core.SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=0.0,
        length_cost=0.0,
        baseline_type=baseline)
    optimizer = torch.optim.Adam(game.parameters(), lr=opts.lr)

    metrics_evaluator = MMMetrics(validation.examples,
                                  opts.device,
                                  opts.n_attributes,
                                  opts.n_values,
                                  opts.vocab_size + 1,
                                  freq=opts.stats_freq)

    loaders = []
    loaders.append(("generalization hold out", generalization_holdout_loader,
                    DiffLoss(opts.n_attributes,
                             opts.n_values,
                             generalization=True)))
    loaders.append(("uniform holdout", uniform_holdout_loader,
                    DiffLoss(opts.n_attributes, opts.n_values)))

    holdout_evaluator = Evaluator(loaders, opts.device, freq=0)
    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr,
                                         validation=True)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=validation_loader,
                           callbacks=[
                               core.ConsoleLogger(as_json=True,
                                                  print_train_loss=False),
                               early_stopper, metrics_evaluator,
                               holdout_evaluator
                           ])
    trainer.train(n_epochs=opts.n_epochs)

    validation_acc = early_stopper.validation_stats[-1][1]['acc']
    uniformtest_acc = holdout_evaluator.results['uniform holdout']['acc']

    # Train new agents
    if validation_acc > 0.99:

        def _set_seed(seed):
            import random
            import numpy as np

            random.seed(seed)
            torch.manual_seed(seed)
            np.random.seed(seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed_all(seed)

        core.get_opts().preemptable = False
        core.get_opts().checkpoint_path = None

        # freeze Sender and probe how fast a simple Receiver will learn the thing
        def retrain_receiver(receiver_generator, sender):
            receiver = receiver_generator()
            game = core.SenderReceiverRnnReinforce(sender,
                                                   receiver,
                                                   loss,
                                                   sender_entropy_coeff=0.0,
                                                   receiver_entropy_coeff=0.0)
            optimizer = torch.optim.Adam(receiver.parameters(), lr=opts.lr)
            early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr,
                                                 validation=True)

            trainer = core.Trainer(game=game,
                                   optimizer=optimizer,
                                   train_data=train_loader,
                                   validation_data=validation_loader,
                                   callbacks=[
                                       early_stopper,
                                       Evaluator(loaders, opts.device, freq=0)
                                   ])
            trainer.train(n_epochs=opts.n_epochs // 2)

            accs = [x[1]['acc'] for x in early_stopper.validation_stats]
            return accs

        frozen_sender = Freezer(copy.deepcopy(sender))

        def gru_receiver_generator():            return \
core.MMRnnReceiverDeterministic(MMReceiver(n_hidden=opts.receiver_hidden, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=opts.receiver_hidden, cell='gru')

        def small_gru_receiver_generator():            return \
core.MMRnnReceiverDeterministic(
                MMReceiver(n_hidden=50, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=50, cell='gru')

        def tiny_gru_receiver_generator():            return \
core.MMRnnReceiverDeterministic(
                MMReceiver(n_hidden=25, n_outputs=n_dim),
                opts.vocab_size + 1, opts.receiver_emb, hidden_size=25, cell='gru')

        def nonlinear_receiver_generator():            return \
MMNonLinearReceiver(n_outputs=n_dim, vocab_size=opts.vocab_size + 1,
            max_length=opts.max_len, n_hidden=opts.receiver_hidden)

        for name, receiver_generator in [
            ('gru', gru_receiver_generator),
            ('nonlinear', nonlinear_receiver_generator),
            ('tiny_gru', tiny_gru_receiver_generator),
            ('small_gru', small_gru_receiver_generator),
        ]:

            for seed in range(17, 17 + 3):
                _set_seed(seed)
                accs = retrain_receiver(receiver_generator, frozen_sender)
                accs += [1.0] * (opts.n_epochs // 2 - len(accs))
                auc = sum(accs)
                print(
                    json.dumps({
                        "mode": "reset",
                        "seed": seed,
                        "receiver_name": name,
                        "auc": auc
                    }))

    print('---End--')

    core.close()
Example #15
0
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features + 1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')],
                         dtype=np.float32)
    probs /= probs.sum()

    train_loader = OneHotLoader(n_features=opts.n_features,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch,
                                probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == 'transformer':
        sender = Sender(n_features=opts.n_features,
                        n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(
            agent=sender,
            vocab_size=opts.vocab_size,
            embed_dim=opts.sender_embedding,
            max_len=opts.max_len,
            num_layers=opts.sender_num_layers,
            num_heads=opts.sender_num_heads,
            hidden_size=opts.sender_hidden,
            force_eos=opts.force_eos,
            generate_style=opts.sender_generate_style,
            causal=opts.causal_sender)
    else:
        sender = Sender(n_features=opts.n_features,
                        n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(sender,
                                         opts.vocab_size,
                                         opts.sender_embedding,
                                         opts.sender_hidden,
                                         cell=opts.sender_cell,
                                         max_len=opts.max_len,
                                         num_layers=opts.sender_num_layers,
                                         force_eos=force_eos)
    if opts.receiver_cell == 'transformer':
        receiver = Receiver(n_features=opts.n_features,
                            n_hidden=opts.receiver_embedding)
        receiver = core.TransformerReceiverDeterministic(
            receiver,
            opts.vocab_size,
            opts.max_len,
            opts.receiver_embedding,
            opts.receiver_num_heads,
            opts.receiver_hidden,
            opts.receiver_num_layers,
            causal=opts.causal_receiver)
    else:

        receiver = Receiver(n_features=opts.n_features,
                            n_hidden=opts.receiver_hidden)

        if not opts.impatient:
            receiver = Receiver(n_features=opts.n_features,
                                n_hidden=opts.receiver_hidden)
            receiver = core.RnnReceiverDeterministic(
                receiver,
                opts.vocab_size,
                opts.receiver_embedding,
                opts.receiver_hidden,
                cell=opts.receiver_cell,
                num_layers=opts.receiver_num_layers)
        else:
            receiver = Receiver(n_features=opts.receiver_hidden,
                                n_hidden=opts.vocab_size)
            # If impatient 1
            receiver = RnnReceiverImpatient(
                receiver,
                opts.vocab_size,
                opts.receiver_embedding,
                opts.receiver_hidden,
                cell=opts.receiver_cell,
                num_layers=opts.receiver_num_layers,
                max_len=opts.max_len,
                n_features=opts.n_features)

    sender.load_state_dict(
        torch.load(opts.sender_weights, map_location=torch.device('cpu')))
    receiver.load_state_dict(
        torch.load(opts.receiver_weights, map_location=torch.device('cpu')))

    if not opts.impatient:
        game = core.SenderReceiverRnnReinforce(
            sender,
            receiver,
            loss,
            sender_entropy_coeff=opts.sender_entropy_coeff,
            receiver_entropy_coeff=opts.receiver_entropy_coeff,
            length_cost=opts.length_cost,
            unigram_penalty=opts.unigram_pen)
    else:
        game = SenderImpatientReceiverRnnReinforce(
            sender,
            receiver,
            loss,
            sender_entropy_coeff=opts.sender_entropy_coeff,
            receiver_entropy_coeff=opts.receiver_entropy_coeff,
            length_cost=opts.length_cost,
            unigram_penalty=opts.unigram_pen)

    optimizer = core.build_optimizer(game.parameters())

    trainer = core.Trainer(
        game=game,
        optimizer=optimizer,
        train_data=train_loader,
        validation_data=test_loader,
        callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    # Debut test position

    position_sieve = np.zeros((opts.n_features, opts.max_len))

    for position in range(opts.max_len):

        dataset = [[torch.eye(opts.n_features).to(device), None]]

        if opts.impatient:
            sender_inputs, messages, receiver_inputs, receiver_outputs, _ = \
                dump_test_position_impatient(trainer.game,
                                    dataset,
                                    position=position,
                                    voc_size=opts.vocab_size,
                                    gs=False,
                                    device=device,
                                    variable_length=True)
        else:
            sender_inputs, messages, receiver_inputs, receiver_outputs, _ = \
                dump_test_position(trainer.game,
                                    dataset,
                                    position=position,
                                    voc_size=opts.vocab_size,
                                    gs=False,
                                    device=device,
                                    variable_length=True)

        acc_pos = []

        for sender_input, message, receiver_output in zip(
                sender_inputs, messages, receiver_outputs):
            input_symbol = sender_input.argmax()
            output_symbol = receiver_output.argmax()
            acc = (input_symbol == output_symbol).float().item()
            acc_pos.append(acc)

        acc_pos = np.array(acc_pos)

        position_sieve[:, position] = acc_pos

    # Put -1 for position after message_length
    _, messages = dump(trainer.game, opts.n_features, device, False)

    # Convert messages to numpy array
    messages_np = []
    for x in messages:
        x = x.cpu().numpy()
        messages_np.append(x)

    for i in range(len(messages_np)):
        # Message i
        message_i = messages_np[i]
        id_0 = np.where(message_i == 0)[0]

        if id_0.shape[0] > 0:
            for j in range(id_0[0] + 1, opts.max_len):
                position_sieve[i, j] = -1

    np.save("analysis/position_sieve.npy", position_sieve)

    core.close()
def main(params):
    print(torch.cuda.is_available())
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    # Distribution of the inputs
    if opts.probs=="uniform":
        probs=[]
        probs_by_att = np.ones(opts.n_values)
        probs_by_att /= probs_by_att.sum()
        for i in range(opts.n_attributes):
            probs.append(probs_by_att)

    if opts.probs=="entropy_test":
        probs=[]
        for i in range(opts.n_attributes):
            probs_by_att = np.ones(opts.n_values)
            probs_by_att[0]=1+(1*i)
            probs_by_att /= probs_by_att.sum()
            probs.append(probs_by_att)

    if opts.probs_attributes=="uniform":
        probs_attributes=[1]*opts.n_attributes

    if opts.probs_attributes=="uniform_indep":
        probs_attributes=[]
        probs_attributes=[0.2]*opts.n_attributes

    if opts.probs_attributes=="echelon":
        probs_attributes=[]
        for i in range(opts.n_attributes):
            #probs_attributes.append(1.-(0.2)*i)
            #probs_attributes.append(0.7+0.3/(i+1))
            probs_attributes=[1.,0.95,0.9,0.85]

    print("Probability by attribute is:",probs_attributes)

    train_loader = OneHotLoaderCompositionality(n_values=opts.n_values, n_attributes=opts.n_attributes, batch_size=opts.batch_size*opts.n_attributes,
                                                batches_per_epoch=opts.batches_per_epoch, probs=probs, probs_attributes=probs_attributes)

    # single batches with 1s on the diag
    test_loader = TestLoaderCompositionality(n_values=opts.n_values,n_attributes=opts.n_attributes)

    ### SENDER ###

    sender = Sender(n_features=opts.n_attributes*opts.n_values, n_hidden=opts.sender_hidden)

    sender = core.RnnSenderReinforce(sender,opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)


    ### RECEIVER ###

    receiver = Receiver(n_features=opts.n_values, n_hidden=opts.receiver_hidden)

    if not opts.impatient:
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
        receiver = RnnReceiverCompositionality(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_attributes=opts.n_attributes, n_values=opts.n_values)
    else:
        receiver = Receiver(n_features=opts.receiver_hidden, n_hidden=opts.vocab_size)
        # If impatient 1
        receiver = RnnReceiverImpatientCompositionality(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_attributes=opts.n_attributes, n_values=opts.n_values)


    if not opts.impatient:
        game = CompositionalitySenderReceiverRnnReinforce(sender, receiver, loss_compositionality, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           n_attributes=opts.n_attributes,n_values=opts.n_values,receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)
    else:
        game = CompositionalitySenderImpatientReceiverRnnReinforce(sender, receiver, loss_impatient_compositionality, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           n_attributes=opts.n_attributes,n_values=opts.n_values,att_weights=opts.att_weights,receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)

    optimizer = core.build_optimizer(game.parameters())

    trainer = CompoTrainer(n_attributes=opts.n_attributes,n_values=opts.n_values,game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])

    curr_accs=[0]*7

    game.att_weights=[1]*(game.n_attributes)

    for epoch in range(int(opts.n_epochs)):

        print("Epoch: "+str(epoch))

        #if epoch%100==0:
        #  trainer.optimizer.defaults["lr"]/=2


        trainer.train(n_epochs=1)
        if opts.checkpoint_dir:
            trainer.save_checkpoint(name=f'{opts.name}_vocab{opts.vocab_size}_rs{opts.random_seed}_lr{opts.lr}_shid{opts.sender_hidden}_rhid{opts.receiver_hidden}_sentr{opts.sender_entropy_coeff}_reg{opts.length_cost}_max_len{opts.max_len}')

        if not opts.impatient:
            acc_vec,messages=dump_compositionality(trainer.game, opts.n_attributes, opts.n_values, device, False,epoch)
        else:
            acc_vec,messages=dump_impatient_compositionality(trainer.game, opts.n_attributes, opts.n_values, device, False,epoch)

        print(acc_vec.mean(0))
        #print(trainer.optimizer.defaults["lr"])


        # ADDITION TO SAVE MESSAGES
        all_messages=[]
        for x in messages:
            x = x.cpu().numpy()
            all_messages.append(x)
        all_messages = np.asarray(all_messages)

        if epoch%50==0:
            torch.save(sender.state_dict(), opts.dir_save+"/sender/sender_weights"+str(epoch)+".pth")
            torch.save(receiver.state_dict(), opts.dir_save+"/receiver/receiver_weights"+str(epoch)+".pth")

        np.save(opts.dir_save+'/messages/messages_'+str((epoch))+'.npy', all_messages)
        np.save(opts.dir_save+'/accuracy/accuracy_'+str((epoch))+'.npy', acc_vec)
        print(acc_vec.T)

    core.close()
Example #17
0
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features+1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')], dtype=np.float32)
    probs /= probs.sum()

    print('the probs are: ', probs, flush=True)

    train_loader = OneHotLoader(n_features=opts.n_features, batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch, probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    if opts.sender_cell == 'transformer':
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_embedding)
        sender = core.TransformerSenderReinforce(agent=sender, vocab_size=opts.vocab_size,
                                                 embed_dim=opts.sender_embedding, max_len=opts.max_len,
                                                 num_layers=opts.sender_num_layers, num_heads=opts.sender_num_heads,
                                                 hidden_size=opts.sender_hidden,
                                                 force_eos=opts.force_eos,
                                                 generate_style=opts.sender_generate_style,
                                                 causal=opts.causal_sender)
    else:
        sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)

        sender = core.RnnSenderReinforce(sender,
                                   opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)
    if opts.receiver_cell == 'transformer':
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_embedding)
        receiver = core.TransformerReceiverDeterministic(receiver, opts.vocab_size, opts.max_len,
                                                         opts.receiver_embedding, opts.receiver_num_heads, opts.receiver_hidden,
                                                         opts.receiver_num_layers, causal=opts.causal_receiver)
    else:
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
        receiver = core.RnnReceiverDeterministic(receiver, opts.vocab_size, opts.receiver_embedding,
                                             opts.receiver_hidden, cell=opts.receiver_cell,
                                             num_layers=opts.receiver_num_layers)

    empty_logger = LoggingStrategy.minimal()
    game = core.SenderReceiverRnnReinforce(sender, receiver, loss, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           train_logging_strategy=empty_logger,
                                           length_cost=opts.length_cost)

    optimizer = core.build_optimizer(game.parameters())

    callbacks = [EarlyStopperAccuracy(opts.early_stopping_thr),
               core.ConsoleLogger(as_json=True, print_train_loss=True)]

    if opts.checkpoint_dir:
        checkpoint_name = f'{opts.name}_vocab{opts.vocab_size}_rs{opts.random_seed}_lr{opts.lr}_shid{opts.sender_hidden}_rhid{opts.receiver_hidden}_sentr{opts.sender_entropy_coeff}_reg{opts.length_cost}_max_len{opts.max_len}'
        callbacks.append(core.CheckpointSaver(checkpoint_path=opts.checkpoint_dir, prefix=checkpoint_name))

    trainer = core.Trainer(game=game, optimizer=optimizer, train_data=train_loader, validation_data=test_loader, callbacks=callbacks)

    trainer.train(n_epochs=opts.n_epochs)

    game.logging_strategy = LoggingStrategy.maximal() # now log everything
    dump(trainer.game, opts.n_features, device, False)
    core.close()
Example #18
0
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features + 1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')],
                         dtype=np.float32)
    probs /= probs.sum()

    print('the probs are: ', probs, flush=True)

    train_loader = OneHotLoader(n_features=opts.n_features,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.batches_per_epoch,
                                probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_features)

    #################################
    # define sender (speaker) agent #
    #################################
    sender = Sender(n_features=opts.n_features, n_hidden=opts.sender_hidden)
    sender = RnnSenderReinforce(sender,
                                opts.vocab_size,
                                opts.sender_embedding,
                                opts.sender_hidden,
                                cell=opts.sender_cell,
                                max_len=opts.max_len,
                                num_layers=opts.sender_num_layers,
                                force_eos=force_eos,
                                noise_loc=opts.sender_noise_loc,
                                noise_scale=opts.sender_noise_scale)

    ####################################
    # define receiver (listener) agent #
    ####################################
    receiver = Receiver(n_features=opts.n_features,
                        n_hidden=opts.receiver_hidden)
    receiver = RnnReceiverDeterministic(receiver,
                                        opts.vocab_size,
                                        opts.receiver_embedding,
                                        opts.receiver_hidden,
                                        cell=opts.receiver_cell,
                                        num_layers=opts.receiver_num_layers,
                                        noise_loc=opts.receiver_noise_loc,
                                        noise_scale=opts.receiver_noise_scale)

    ###################
    # define  channel #
    ###################
    channel = Channel(vocab_size=opts.vocab_size, p=opts.channel_repl_prob)

    game = SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=opts.receiver_entropy_coeff,
        length_cost=opts.length_cost,
        effective_max_len=opts.effective_max_len,
        channel=channel,
        sender_entropy_common_ratio=opts.sender_entropy_common_ratio)

    optimizer = core.build_optimizer(game.parameters())

    callbacks = [
        EarlyStopperAccuracy(opts.early_stopping_thr),
        core.ConsoleLogger(as_json=True, print_train_loss=True)
    ]

    if opts.checkpoint_dir:
        '''
        info in checkpoint_name:
            - n_features as f
            - vocab_size as vocab
            - random_seed as rs
            - lr as lr
            - sender_hidden as shid
            - receiver_hidden as rhid
            - sender_entropy_coeff as sentr
            - length_cost as reg
            - max_len as max_len
            - sender_noise_scale as sscl
            - receiver_noise_scale as rscl
            - channel_repl_prob as crp
            - sender_entropy_common_ratio as scr
        '''
        checkpoint_name = (
            f'{opts.name}' + '_aer' +
            ('_uniform' if opts.probs == 'uniform' else '') +
            f'_f{opts.n_features}' + f'_vocab{opts.vocab_size}' +
            f'_rs{opts.random_seed}' + f'_lr{opts.lr}' +
            f'_shid{opts.sender_hidden}' + f'_rhid{opts.receiver_hidden}' +
            f'_sentr{opts.sender_entropy_coeff}' + f'_reg{opts.length_cost}' +
            f'_max_len{opts.max_len}' + f'_sscl{opts.sender_noise_scale}' +
            f'_rscl{opts.receiver_noise_scale}' +
            f'_crp{opts.channel_repl_prob}' +
            f'_scr{opts.sender_entropy_common_ratio}')
        callbacks.append(
            core.CheckpointSaver(checkpoint_path=opts.checkpoint_dir,
                                 checkpoint_freq=opts.checkpoint_freq,
                                 prefix=checkpoint_name))

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=callbacks)

    trainer.train(n_epochs=opts.n_epochs)
    print('<div id="prefix test without eos">')
    prefix_test(trainer.game, opts.n_features, device, add_eos=False)
    print('</div>')
    print('<div id="prefix test with eos">')
    prefix_test(trainer.game, opts.n_features, device, add_eos=True)
    print('<div id="suffix test">')
    suffix_test(trainer.game, opts.n_features, device)
    print('</div>')
    print('<div id="replacement test">')
    replacement_test(trainer.game, opts.n_features, opts.vocab_size, device)
    print('</div>')
    print('<div id="dump">')
    dump(trainer.game, opts.n_features, device, False)
    print('</div>')
    core.close()
Example #19
0
def main(params):
    opts = get_params(params)
    print(opts)

    full_data, train, uniform_holdout, generalization_holdout = get_data(opts)

    generalization_holdout, train, uniform_holdout, full_data = [
        one_hotify(x, opts.n_attributes, opts.n_values)
        for x in [generalization_holdout, train, uniform_holdout, full_data]
    ]

    train, validation = ScaledDataset(train, opts.data_scaler), ScaledDataset(
        train, 1)

    generalization_holdout, uniform_holdout, full_data = (
        ScaledDataset(generalization_holdout),
        ScaledDataset(uniform_holdout),
        ScaledDataset(full_data),
    )
    generalization_holdout_loader, uniform_holdout_loader, full_data_loader = [
        DataLoader(x, batch_size=opts.batch_size)
        for x in [generalization_holdout, uniform_holdout, full_data]
    ]

    train_loader = DataLoader(train, batch_size=opts.batch_size, shuffle=True)
    validation_loader = DataLoader(validation, batch_size=len(validation))

    loss = DiffLoss(opts.n_attributes, opts.n_values)

    sender = getattr(egg.zoo.compo_vs_generalization_ood.archs,
                     opts.sender)(opts)
    receiver = getattr(egg.zoo.compo_vs_generalization_ood.archs,
                       opts.receiver)(opts)

    game = core.SenderReceiverRnnReinforce(
        sender,
        receiver,
        loss,
        sender_entropy_coeff=opts.sender_entropy_coeff,
        receiver_entropy_coeff=0.0,
        length_cost=0.0,
        baseline_type=core.baselines.MeanBaseline,
    )
    optimizer = torch.optim.Adam(game.parameters(), lr=opts.lr)

    metrics_evaluator = Metrics(
        validation.examples,
        opts.device,
        opts.n_attributes,
        opts.n_values,
        opts.vocab_size + 1,
        freq=opts.stats_freq,
    )

    metrics_evaluator_generalization_holdout = Metrics(
        generalization_holdout.examples,
        opts.device,
        opts.n_attributes,
        opts.n_values,
        opts.vocab_size + 1,
        freq=opts.stats_freq,
    )

    loaders = []
    loaders.append((
        "generalization hold out",
        generalization_holdout_loader,
        # DiffLoss(opts.n_attributes, opts.n_values, generalization=True),
        # we don't want to ignore zeros:
        DiffLoss(opts.n_attributes, opts.n_values, generalization=False),
    ))
    loaders.append((
        "uniform holdout",
        uniform_holdout_loader,
        DiffLoss(opts.n_attributes, opts.n_values),
    ))

    holdout_evaluator = Evaluator(loaders, opts.device, freq=1)
    early_stopper = EarlyStopperAccuracy(opts.early_stopping_thr,
                                         validation=True)

    trainer = core.Trainer(
        game=game,
        optimizer=optimizer,
        train_data=train_loader,
        validation_data=validation_loader,
        callbacks=[
            # print validation (i.e. unscaled training data) loss:
            core.ConsoleLogger(as_json=True, print_train_loss=False),
            early_stopper,
            # print compositionality metrics at the end of training
            #   (validation, i.e, unscaled training data):
            metrics_evaluator,
            # print compositionality metrics at the end of training (holdout data):
            metrics_evaluator_generalization_holdout,
            # print generalization and uniform holdout accuracies at each epoch:
            holdout_evaluator,
        ],
    )
    trainer.train(n_epochs=opts.n_epochs)

    core.close()
Example #20
0
def main(params):
    opts = get_params(params)
    print(opts)

    device = opts.device

    train_loader = OneHotLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r,
                                batch_size=opts.batch_size,
                                batches_per_epoch=opts.n_examples_per_epoch /
                                opts.batch_size)

    test_loader = UniformLoader(n_bits=opts.n_bits,
                                bits_s=opts.bits_s,
                                bits_r=opts.bits_r)
    test_loader.batch = [x.to(device) for x in test_loader.batch]

    if not opts.variable_length:
        sender = Sender(n_bits=opts.n_bits,
                        n_hidden=opts.sender_hidden,
                        vocab_size=opts.vocab_size)
        if opts.mode == 'gs':
            sender = core.GumbelSoftmaxWrapper(agent=sender,
                                               temperature=opts.temperature)
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)
            game = core.SymbolGameGS(sender, receiver, diff_loss)
        elif opts.mode == 'rf':
            sender = core.ReinforceWrapper(agent=sender)
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)
            receiver = core.ReinforceDeterministicWrapper(agent=receiver)
            game = core.SymbolGameReinforce(
                sender,
                receiver,
                diff_loss,
                sender_entropy_coeff=opts.sender_entropy_coeff)
        elif opts.mode == 'non_diff':
            sender = core.ReinforceWrapper(agent=sender)
            receiver = ReinforcedReceiver(n_bits=opts.n_bits,
                                          n_hidden=opts.receiver_hidden)
            receiver = core.SymbolReceiverWrapper(
                receiver,
                vocab_size=opts.vocab_size,
                agent_input_size=opts.receiver_hidden)

            game = core.SymbolGameReinforce(
                sender,
                receiver,
                non_diff_loss,
                sender_entropy_coeff=opts.sender_entropy_coeff,
                receiver_entropy_coeff=opts.receiver_entropy_coeff)
    else:
        if opts.mode != 'rf':
            print('Only mode=rf is supported atm')
            opts.mode = 'rf'

        if opts.sender_cell == 'transformer':
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            sender = Sender(
                n_bits=opts.n_bits,
                n_hidden=opts.sender_hidden,
                vocab_size=opts.sender_hidden)  # TODO: not really vocab
            sender = core.TransformerSenderReinforce(
                agent=sender,
                vocab_size=opts.vocab_size,
                embed_dim=opts.sender_emb,
                max_len=opts.max_len,
                num_layers=1,
                num_heads=1,
                hidden_size=opts.sender_hidden)
        else:
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            sender = Sender(
                n_bits=opts.n_bits,
                n_hidden=opts.sender_hidden,
                vocab_size=opts.sender_hidden)  # TODO: not really vocab
            sender = core.RnnSenderReinforce(agent=sender,
                                             vocab_size=opts.vocab_size,
                                             embed_dim=opts.sender_emb,
                                             hidden_size=opts.sender_hidden,
                                             max_len=opts.max_len,
                                             cell=opts.sender_cell)

        if opts.receiver_cell == 'transformer':
            receiver = Receiver(n_bits=opts.n_bits, n_hidden=opts.receiver_emb)
            receiver = core.TransformerReceiverDeterministic(
                receiver,
                opts.vocab_size,
                opts.max_len,
                opts.receiver_emb,
                num_heads=1,
                hidden_size=opts.receiver_hidden,
                num_layers=1)
        else:
            receiver = Receiver(n_bits=opts.n_bits,
                                n_hidden=opts.receiver_hidden)
            receiver = core.RnnReceiverDeterministic(receiver,
                                                     opts.vocab_size,
                                                     opts.receiver_emb,
                                                     opts.receiver_hidden,
                                                     cell=opts.receiver_cell)

            game = core.SenderReceiverRnnGS(sender, receiver, diff_loss)

        game = core.SenderReceiverRnnReinforce(
            sender,
            receiver,
            diff_loss,
            sender_entropy_coeff=opts.sender_entropy_coeff,
            receiver_entropy_coeff=opts.receiver_entropy_coeff)

    optimizer = torch.optim.Adam([
        dict(params=sender.parameters(), lr=opts.sender_lr),
        dict(params=receiver.parameters(), lr=opts.receiver_lr)
    ])

    loss = game.loss

    intervention = CallbackEvaluator(test_loader,
                                     device=device,
                                     is_gs=opts.mode == 'gs',
                                     loss=loss,
                                     var_length=opts.variable_length,
                                     input_intervention=True)

    trainer = core.Trainer(game=game,
                           optimizer=optimizer,
                           train_data=train_loader,
                           validation_data=test_loader,
                           callbacks=[
                               core.ConsoleLogger(as_json=True),
                               EarlyStopperAccuracy(opts.early_stopping_thr),
                               intervention
                           ])

    trainer.train(n_epochs=opts.n_epochs)

    core.close()
def main(params):
    opts = get_params(params)
    print(opts, flush=True)
    device = opts.device

    force_eos = opts.force_eos == 1

    if opts.probs == 'uniform':
        probs = np.ones(opts.n_features)
    elif opts.probs == 'powerlaw':
        probs = 1 / np.arange(1, opts.n_features+1, dtype=np.float32)
    else:
        probs = np.array([float(x) for x in opts.probs.split(',')], dtype=np.float32)
    probs /= probs.sum()

    train_loader = OneHotLoader(n_features=opts.n_values, batch_size=opts.batch_size*opts.n_attributes,
                                batches_per_epoch=opts.batches_per_epoch, probs=probs)

    # single batches with 1s on the diag
    test_loader = UniformLoader(opts.n_values)

    ### SENDER ###

    sender = Sender(n_features=opts.n_attributes*opts.n_values, n_hidden=opts.sender_hidden)

    sender = core.RnnSenderReinforce(sender,opts.vocab_size, opts.sender_embedding, opts.sender_hidden,
                                   cell=opts.sender_cell, max_len=opts.max_len, num_layers=opts.sender_num_layers,
                                   force_eos=force_eos)


    ### RECEIVER ###

    receiver = Receiver(n_features=opts.n_values, n_hidden=opts.receiver_hidden)

    if not opts.impatient:
        receiver = Receiver(n_features=opts.n_features, n_hidden=opts.receiver_hidden)
        receiver = RnnReceiverCompositionality(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_attributes=opts.n_attributes, n_values=opts.n_values)
    else:
        receiver = Receiver(n_features=opts.receiver_hidden, n_hidden=opts.vocab_size)
        # If impatient 1
        receiver = RnnReceiverImpatientCompositionality(receiver, opts.vocab_size, opts.receiver_embedding,
                                            opts.receiver_hidden, cell=opts.receiver_cell,
                                            num_layers=opts.receiver_num_layers, max_len=opts.max_len, n_attributes=opts.n_attributes, n_values=opts.n_values)


    sender.load_state_dict(torch.load(opts.sender_weights,map_location=torch.device('cpu')))
    receiver.load_state_dict(torch.load(opts.receiver_weights,map_location=torch.device('cpu')))

    if not opts.impatient:
        game = CompositionalitySenderReceiverRnnReinforce(sender, receiver, loss_compositionality, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           n_attributes=opts.n_attributes,n_values=opts.n_values,att_weights=[1],receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)
    else:
        game = CompositionalitySenderImpatientReceiverRnnReinforce(sender, receiver, loss_impatient_compositionality, sender_entropy_coeff=opts.sender_entropy_coeff,
                                           n_attributes=opts.n_attributes,n_values=opts.n_values,att_weights=[1],receiver_entropy_coeff=opts.receiver_entropy_coeff,
                                           length_cost=opts.length_cost,unigram_penalty=opts.unigram_pen,reg=opts.reg)

    optimizer = core.build_optimizer(game.parameters())

    trainer = CompoTrainer(n_attributes=opts.n_attributes,n_values=opts.n_values,game=game, optimizer=optimizer, train_data=train_loader,
                           validation_data=test_loader, callbacks=[EarlyStopperAccuracy(opts.early_stopping_thr)])



    # Debut test position

    position_sieve=np.zeros((opts.n_attributes**opts.n_values,opts.max_len,opts.n_attributes))

    for position in range(opts.max_len):

        one_hots = torch.eye(opts.n_values)

        val=np.arange(opts.n_values)
        combination=list(itertools.product(val,repeat=opts.n_attributes))

        dataset=[]

        for i in range(len(combination)):
          new_input=torch.zeros(0)
          for j in combination[i]:
            new_input=torch.cat((new_input,one_hots[j]))
          dataset.append(new_input)

        dataset=torch.stack(dataset)

        dataset=[[dataset,None]]

        if opts.impatient:
            sender_inputs, messages, receiver_inputs, receiver_outputs, _ = \
                dump_test_position_impatient_compositionality(trainer.game,
                                    dataset,
                                    position=position,
                                    voc_size=opts.vocab_size,
                                    gs=False,
                                    device=device,
                                    variable_length=True)
        else:
            sender_inputs, messages, receiver_inputs, receiver_outputs, _ = \
                dump_test_position_compositionality(trainer.game,
                                    dataset,
                                    position=position,
                                    voc_size=opts.vocab_size,
                                    gs=False,
                                    device=device,
                                    variable_length=True)

        for i in range(len(receiver_outputs)):
          message=messages[i]
          correct=True
          for j in range(len(list(combination[i]))):
            if receiver_outputs[i][j]==list(combination[i])[j]:
              position_sieve[i,position,j]=1


    # Put -1 for position after message_length
    if not opts.impatient:
        acc_vec,messages=dump_compositionality(trainer.game, opts.n_attributes, opts.n_values, device, False,0)
    else:
        acc_vec,messages=dump_impatient_compositionality(trainer.game, opts.n_attributes, opts.n_values, device, False,0)

    # Convert messages to numpy array
    messages_np=[]
    for x in messages:
        x = x.cpu().numpy()
        messages_np.append(x)

    for i in range(len(messages_np)):
        # Message i
        message_i=messages_np[i]
        id_0=np.where(message_i==0)[0]

        if id_0.shape[0]>0:
          for j in range(id_0[0]+1,opts.max_len):
              position_sieve[i,j]=-1

    np.save("analysis/position_sieve.npy",position_sieve)

    core.close()