train_data, validation_data, test_data = data_loader.get_iterators() data_loader.upd_cl_options(opts) if opts.max_len > 1: baseline_msg = 'Cannot yet compute "smart" baseline value for messages of length greater than 1' else: baseline_msg = f'\n| Baselines measures with {opts.n_distractors} distractors and messages of max_len = {opts.max_len}:\n' \ f'| Dummy random baseline: accuracy = {1 / (opts.n_distractors + 1)}\n' if -1 not in opts.perceptual_dimensions: baseline_msg += f'| "Smart" baseline with perceptual_dimensions {opts.perceptual_dimensions} = {compute_baseline_accuracy(opts.n_distractors, opts.max_len, *opts.perceptual_dimensions)}\n' else: baseline_msg += f'| Data was loaded froman external file, thus no perceptual_dimension vector was provided, "smart baseline" cannot be computed\n' sender = Sender(n_features=data_loader.n_features, n_hidden=opts.sender_hidden) receiver = Receiver(n_features=data_loader.n_features, linear_units=opts.receiver_hidden) if opts.mode.lower() == 'gs': sender = core.RnnSenderGS(sender, opts.vocab_size, opts.sender_embedding, opts.sender_hidden, cell=opts.sender_cell, max_len=opts.max_len, temperature=opts.temperature) receiver = core.RnnReceiverGS(receiver, opts.vocab_size, opts.receiver_embedding, opts.receiver_hidden,
def main(params): opts = get_params(params) device = torch.device("cuda" if opts.cuda else "cpu") data_loader = VectorsLoader( perceptual_dimensions=opts.perceptual_dimensions, n_distractors=opts.n_distractors, batch_size=opts.batch_size, train_samples=opts.train_samples, validation_samples=opts.validation_samples, test_samples=opts.test_samples, shuffle_train_data=opts.shuffle_train_data, dump_data_folder=opts.dump_data_folder, load_data_path=opts.load_data_path, seed=opts.data_seed, ) train_data, validation_data, test_data = data_loader.get_iterators() data_loader.upd_cl_options(opts) if opts.max_len > 1: baseline_msg = 'Cannot yet compute "smart" baseline value for messages of length greater than 1' else: baseline_msg = ( f"\n| Baselines measures with {opts.n_distractors} distractors and messages of max_len = {opts.max_len}:\n" f"| Dummy random baseline: accuracy = {1 / (opts.n_distractors + 1)}\n" ) if -1 not in opts.perceptual_dimensions: baseline_msg += f'| "Smart" baseline with perceptual_dimensions {opts.perceptual_dimensions} = {compute_baseline_accuracy(opts.n_distractors, opts.max_len, *opts.perceptual_dimensions)}\n' else: baseline_msg += f'| Data was loaded froman external file, thus no perceptual_dimension vector was provided, "smart baseline" cannot be computed\n' print(baseline_msg) sender = Sender(n_features=data_loader.n_features, n_hidden=opts.sender_hidden) receiver = Receiver(n_features=data_loader.n_features, linear_units=opts.receiver_hidden) if opts.mode.lower() == "gs": sender = core.RnnSenderGS( sender, opts.vocab_size, opts.sender_embedding, opts.sender_hidden, cell=opts.sender_cell, max_len=opts.max_len, temperature=opts.temperature, ) receiver = core.RnnReceiverGS( receiver, opts.vocab_size, opts.receiver_embedding, opts.receiver_hidden, cell=opts.receiver_cell, ) game = core.SenderReceiverRnnGS(sender, receiver, loss) else: raise NotImplementedError(f"Unknown training mode, {opts.mode}") optimizer = torch.optim.Adam([ { "params": game.sender.parameters(), "lr": opts.sender_lr }, { "params": game.receiver.parameters(), "lr": opts.receiver_lr }, ]) callbacks = [core.ConsoleLogger(as_json=True)] if opts.mode.lower() == "gs": callbacks.append( core.TemperatureUpdater(agent=sender, decay=0.9, minimum=0.1)) trainer = core.Trainer( game=game, optimizer=optimizer, train_data=train_data, validation_data=validation_data, callbacks=callbacks, ) trainer.train(n_epochs=opts.n_epochs) if opts.evaluate: is_gs = opts.mode == "gs" ( sender_inputs, messages, receiver_inputs, receiver_outputs, labels, ) = dump_sender_receiver(game, test_data, is_gs, variable_length=True, device=device) receiver_outputs = move_to(receiver_outputs, device) labels = move_to(labels, device) receiver_outputs = torch.stack(receiver_outputs) labels = torch.stack(labels) tensor_accuracy = receiver_outputs.argmax(dim=1) == labels accuracy = torch.mean(tensor_accuracy.float()).item() unique_dict = {} for elem in sender_inputs: target = "" for dim in elem: target += f"{str(int(dim.item()))}-" target = target[:-1] if target not in unique_dict: unique_dict[target] = True print(f"| Accuracy on test set: {accuracy}") compute_mi_input_msgs(sender_inputs, messages) print(f"entropy sender inputs {entropy(sender_inputs)}") print(f"mi sender inputs msgs {mutual_info(sender_inputs, messages)}") if opts.dump_msg_folder: opts.dump_msg_folder.mkdir(exist_ok=True) msg_dict = {} output_msg = ( f"messages_{opts.perceptual_dimensions}_vocab_{opts.vocab_size}" f"_maxlen_{opts.max_len}_bsize_{opts.batch_size}" f"_n_distractors_{opts.n_distractors}_train_size_{opts.train_samples}" f"_valid_size_{opts.validation_samples}_test_size_{opts.test_samples}" f"_slr_{opts.sender_lr}_rlr_{opts.receiver_lr}_shidden_{opts.sender_hidden}" f"_rhidden_{opts.receiver_hidden}_semb_{opts.sender_embedding}" f"_remb_{opts.receiver_embedding}_mode_{opts.mode}" f"_scell_{opts.sender_cell}_rcell_{opts.receiver_cell}.msg") output_file = opts.dump_msg_folder / output_msg with open(output_file, "w") as f: f.write(f"{opts}\n") for ( sender_input, message, receiver_input, receiver_output, label, ) in zip(sender_inputs, messages, receiver_inputs, receiver_outputs, labels): sender_input = ",".join(map(str, sender_input.tolist())) message = ",".join(map(str, message.tolist())) distractors_list = receiver_input.tolist() receiver_input = "; ".join([ ",".join(map(str, elem)) for elem in distractors_list ]) if is_gs: receiver_output = receiver_output.argmax() f.write( f"{sender_input} -> {receiver_input} -> {message} -> {receiver_output} (label={label.item()})\n" ) if message in msg_dict: msg_dict[message] += 1 else: msg_dict[message] = 1 sorted_msgs = sorted(msg_dict.items(), key=operator.itemgetter(1), reverse=True) f.write( f"\nUnique target vectors seen by sender: {len(unique_dict.keys())}\n" ) f.write( f"Unique messages produced by sender: {len(msg_dict.keys())}\n" ) f.write(f"Messagses: 'msg' : msg_count: {str(sorted_msgs)}\n") f.write(f"\nAccuracy: {accuracy}")
data_loader.upd_cl_options(opts) if opts.max_len > 1: baseline_msg = 'Cannot yet compute "smart" baseline value for messages of length greater than 1' else: baseline_msg = f'\n| Baselines measures with {opts.n_distractors} distractors and messages of max_len = {opts.max_len}:\n' \ f'| Dummy random baseline: accuracy = {1 / (opts.n_distractors + 1)}\n' if -1 not in opts.perceptual_dimensions: baseline_msg += f'| "Smart" baseline with perceptual_dimensions {opts.perceptual_dimensions} = {compute_baseline_accuracy(opts.n_distractors, opts.max_len, *opts.perceptual_dimensions)}\n' else: baseline_msg += f'| Data was loaded froman external file, thus no perceptual_dimension vector was provided, "smart baseline" cannot be computed\n' print(baseline_msg) sender = Sender(n_features=data_loader.n_features, n_hidden=opts.sender_hidden) receiver = Receiver(n_features=data_loader.n_features, linear_units=opts.receiver_hidden) if opts.mode.lower() == 'gs': sender = core.RnnSenderGS(sender, opts.vocab_size, opts.sender_embedding, opts.sender_hidden, cell=opts.sender_cell, max_len=opts.max_len, temperature=opts.temperature ) receiver = core.RnnReceiverGS(receiver, opts.vocab_size,