Example #1
0
def create_btheta_losses_dcopf_model(model_data, relaxation_type=RelaxationType.SOC, include_angle_diff_limits=False, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace = True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'],
                          bounds=va_bounds
                          )

    dva_initialize = {k: 0.0 for k in branch_attrs['names']}
    libbranch.declare_var_dva(model, branch_attrs['names'],
                              initialize=dva_initialize
                              )

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    penalty_expr = None
    if include_feasibility_slack:
        p_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs, gen_attrs, bus_p_loads)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real power
    pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']}
    libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])
                          )

    ### declare the current flows in the branches
    vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']}
    vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']}
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    pf_bounds = {k: (-p_max[k],p_max[k]) for k in branches.keys()}
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus])
    pfl_bounds = {k: (0,p_max[k]**2) for k in branches.keys()}
    pfl_init = {k: 0 for k in branches.keys()}

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds
                             )

    libbranch.declare_var_pfl(model=model,
                              index_set=branch_attrs['names'],
                              initialize=pfl_init,
                              bounds=pfl_bounds
                             )

    ### declare the angle difference constraint
    libbranch.declare_eq_branch_dva(model=model,
                                    index_set=branch_attrs['names'],
                                    branches=branches
                                    )

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(model=model,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches,
                                                    approximation_type=ApproximationType.BTHETA_LOSSES
                                                    )

    ### declare the branch power loss approximation constraints
    libbranch.declare_eq_branch_loss_btheta_approx(model=model,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches,
                                                    relaxation_type=relaxation_type
                                                    )

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(model=model,
                                          index_set=bus_attrs['names'],
                                          bus_p_loads=bus_p_loads,
                                          gens_by_bus=gens_by_bus,
                                          bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                          inlet_branches_by_bus=inlet_branches_by_bus,
                                          outlet_branches_by_bus=outlet_branches_by_bus,
                                          approximation_type=ApproximationType.BTHETA_LOSSES,
                                          **p_rhs_kwargs
                                          )

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(model=model,
                                                 index_set=branch_attrs['names'],
                                                 branches=branches,
                                                 p_thermal_limits=p_max,
                                                 approximation_type=ApproximationType.BTHETA
                                                 )

    ### declare angle difference limits on interconnected buses
    if include_angle_diff_limits:
        libbranch.declare_ineq_angle_diff_branch_lbub(model=model,
                                                      index_set=branch_attrs['names'],
                                                      branches=branches,
                                                      coordinate_type=CoordinateType.POLAR
                                                      )

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost']
                                                  )

    obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
Example #2
0
def _btheta_dcopf_network_model(block, tm):
    m, gens_by_bus, bus_p_loads, bus_gs_fixed_shunts = \
            _setup_egret_network_model(block, tm)

    buses, branches, \
    branches_in_service, branches_out_service, \
    interfaces, contingencies = _setup_egret_network_topology(m, tm)
    if contingencies:
        raise RuntimeError(
            "Contingency constraints only supported in lazy-PTDF mode")

    ## need the inlet/outlet relationship given some lines may be out
    inlet_branches_by_bus = dict()
    outlet_branches_by_bus = dict()
    for b in m.Buses:
        inlet_branches_by_bus[b] = list()
        for l in m.LinesTo[b]:
            if l not in branches_out_service:
                inlet_branches_by_bus[b].append(l)
        outlet_branches_by_bus[b] = list()
        for l in m.LinesFrom[b]:
            if l not in branches_out_service:
                outlet_branches_by_bus[b].append(l)

    va_bounds = {k: (-pi, pi) for k in buses.keys()}
    libbus.declare_var_va(block,
                          buses.keys(),
                          initialize=None,
                          bounds=va_bounds)

    ### fix the reference bus
    ref_bus = value(m.ReferenceBus)
    ref_angle = value(m.ReferenceBusAngle)
    block.va[ref_bus].fix(math.radians(ref_angle))

    p_max = {k: branches[k]['rating_long_term'] for k in branches_in_service}
    p_lbub = {k: (-p_max[k], p_max[k]) for k in branches_in_service}
    pf_bounds = p_lbub

    libbranch.declare_var_pf(
        model=block,
        index_set=branches_in_service,
        initialize=None,
    )
    _setup_branch_slacks(m, block, tm)

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(
        model=block, index_set=branches_in_service, branches=branches)

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(
        model=block,
        index_set=buses.keys(),
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus,
        approximation_type=ApproximationType.BTHETA)

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(
        model=block,
        index_set=branches_in_service,
        branches=branches,
        p_thermal_limits=p_max,
        approximation_type=ApproximationType.BTHETA,
        slacks=True,
        slack_cost_expr=m.BranchViolationCost[tm])

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=block,
        index_set=branches_in_service,
        branches=branches,
        coordinate_type=CoordinateType.POLAR)

    ### interface model
    ### declare the interface variables
    libbranch.declare_var_pfi(
        model=block,
        index_set=interfaces.keys(),
    )

    _setup_interface_slacks(m, block, tm)

    ### declare the interface flow equality constraint
    libbranch.declare_eq_interface_power_btheta_approx(
        model=block,
        index_set=interfaces.keys(),
        interfaces=interfaces,
    )

    ### declare the interface flow limits
    libbranch.declare_ineq_p_interface_bounds(
        model=block,
        index_set=interfaces.keys(),
        interfaces=interfaces,
        slacks=True,
        slack_cost_expr=m.InterfaceViolationCost[tm])

    return block
Example #3
0
def create_relaxation_of_polar_acopf(model_data,
                                     include_soc=True,
                                     use_linear_relaxation=False):
    if not coramin_available:
        raise ImportError(
            'Cannot create polar relaxation unless coramin is available.')

    model, md = _create_base_relaxation(model_data)
    branches = dict(md.elements(element_type='branch'))
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus'])
    unique_bus_pairs = list(
        OrderedDict((val, None) for idx, val in bus_pairs.items()).keys())

    # declare the polar voltages
    libbus.declare_var_vm(model,
                          bus_attrs['names'],
                          initialize=bus_attrs['vm'],
                          bounds=zip_items(bus_attrs['v_min'],
                                           bus_attrs['v_max']))

    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model,
                          bus_attrs['names'],
                          initialize=bus_attrs['va'],
                          bounds=va_bounds)

    # fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.va[ref_bus].fix(radians(ref_angle))

    # relate c, s, and vmsq to vm and va
    libbus.declare_eq_vmsq(model=model,
                           index_set=bus_attrs['names'],
                           coordinate_type=CoordinateType.POLAR)
    libbranch.declare_eq_c(model=model,
                           index_set=unique_bus_pairs,
                           coordinate_type=CoordinateType.POLAR)
    libbranch.declare_eq_s(model=model,
                           index_set=unique_bus_pairs,
                           coordinate_type=CoordinateType.POLAR)

    # declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.POLAR)

    fbbt(model, deactivate_satisfied_constraints=False)
    model = coramin.relaxations.relax(model, in_place=True, use_fbbt=False)
    if not use_linear_relaxation:
        for b in model.component_data_objects(pe.Block,
                                              descend_into=True,
                                              active=True,
                                              sort=True):
            if isinstance(b, (coramin.relaxations.BaseRelaxation,
                              coramin.relaxations.BaseRelaxationData)):
                if polynomial_degree(b.get_rhs_expr()) == 2:
                    if not isinstance(
                            b,
                        (coramin.relaxations.PWMcCormickRelaxation,
                         coramin.relaxations.PWMcCormickRelaxationData)):
                        b.use_linear_relaxation = False
                        b.rebuild()

    if include_soc:
        libbranch.declare_ineq_soc(
            model=model,
            index_set=unique_bus_pairs,
            use_outer_approximation=use_linear_relaxation)

    return model, md
Example #4
0
def create_riv_acopf_model(model_data, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads)
    model.pl.fix()
    model.ql.fix()

    ### declare the fixed shunts at the buses
    bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(
        buses, shunts)

    ### declare the rectangular voltages
    neg_v_max = map_items(op.neg, bus_attrs['v_max'])
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vr(model,
                          bus_attrs['names'],
                          initialize=vr_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vj(model,
                          bus_attrs['names'],
                          initialize=vj_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    q_rhs_kwargs = {}
    if include_feasibility_slack:
        p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(
            model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        libbus.declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus)
    else:
        model.vj[ref_bus].fix(0.0)
        model.vr[ref_bus].setlb(0.0)

    ### declare the generator real and reactive power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    qg_init = {
        k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0
        for k in gen_attrs['qg']
    }
    libgen.declare_var_qg(model,
                          gen_attrs['names'],
                          initialize=qg_init,
                          bounds=zip_items(gen_attrs['q_min'],
                                           gen_attrs['q_max']))

    ### declare the current flows in the branches
    branch_currents = tx_utils.dict_of_branch_currents(branches, buses)
    s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    if_bounds = dict()
    it_bounds = dict()
    ifr_init = dict()
    ifj_init = dict()
    itr_init = dict()
    itj_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init[branch_name] = tx_calc.calculate_ifr(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        ifj_init[branch_name] = tx_calc.calculate_ifj(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        itr_init[branch_name] = tx_calc.calculate_itr(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        itj_init[branch_name] = tx_calc.calculate_itj(vr_init[from_bus],
                                                      vj_init[from_bus],
                                                      vr_init[to_bus],
                                                      vj_init[to_bus],
                                                      y_matrix)
        if s_max[branch_name] is None:
            if_bounds[branch_name] = (None, None)
            it_bounds[branch_name] = (None, None)
        else:
            if_max = s_max[branch_name] / buses[branches[branch_name]
                                                ['from_bus']]['v_min']
            it_max = s_max[branch_name] / buses[branches[branch_name]
                                                ['to_bus']]['v_min']
            if_bounds[branch_name] = (-if_max, if_max)
            it_bounds[branch_name] = (-it_max, it_max)

    libbranch.declare_var_ifr(model=model,
                              index_set=branch_attrs['names'],
                              initialize=ifr_init,
                              bounds=if_bounds)
    libbranch.declare_var_ifj(model=model,
                              index_set=branch_attrs['names'],
                              initialize=ifj_init,
                              bounds=if_bounds)
    libbranch.declare_var_itr(model=model,
                              index_set=branch_attrs['names'],
                              initialize=itr_init,
                              bounds=it_bounds)
    libbranch.declare_var_itj(model=model,
                              index_set=branch_attrs['names'],
                              initialize=itj_init,
                              bounds=it_bounds)

    ir_init = dict()
    ij_init = dict()
    for bus_name, bus in buses.items():
        ir_expr = sum([
            ifr_init[branch_name]
            for branch_name in outlet_branches_by_bus[bus_name]
        ])
        ir_expr += sum([
            itr_init[branch_name]
            for branch_name in inlet_branches_by_bus[bus_name]
        ])
        ij_expr = sum([
            ifj_init[branch_name]
            for branch_name in outlet_branches_by_bus[bus_name]
        ])
        ij_expr += sum([
            itj_init[branch_name]
            for branch_name in inlet_branches_by_bus[bus_name]
        ])

        if bus_gs_fixed_shunts[bus_name] != 0.0:
            ir_expr += bus_gs_fixed_shunts[bus_name] * vr_init[bus_name]
            ij_expr += bus_gs_fixed_shunts[bus_name] * vj_init[bus_name]
        if bus_bs_fixed_shunts[bus_name] != 0.0:
            ir_expr += bus_bs_fixed_shunts[bus_name] * vj_init[bus_name]
            ij_expr += bus_bs_fixed_shunts[bus_name] * vr_init[bus_name]

        ir_init[bus_name] = ir_expr
        ij_init[bus_name] = ij_expr

    # TODO: Implement better bounds (?) for these aggregated variables -- note, these are unbounded in old Egret
    libbus.declare_var_ir_aggregation_at_bus(model=model,
                                             index_set=bus_attrs['names'],
                                             initialize=ir_init,
                                             bounds=(None, None))
    libbus.declare_var_ij_aggregation_at_bus(model=model,
                                             index_set=bus_attrs['names'],
                                             initialize=ij_init,
                                             bounds=(None, None))

    ### declare the branch current flow constraints
    libbranch.declare_eq_branch_current(model=model,
                                        index_set=branch_attrs['names'],
                                        branches=branches)

    ### declare the ir/ij_aggregation constraints
    libbus.declare_eq_i_aggregation_at_bus(
        model=model,
        index_set=bus_attrs['names'],
        bus_bs_fixed_shunts=bus_bs_fixed_shunts,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus)

    ### declare the pq balances
    libbus.declare_eq_p_balance_with_i_aggregation(
        model=model,
        index_set=bus_attrs['names'],
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        **p_rhs_kwargs)

    libbus.declare_eq_q_balance_with_i_aggregation(
        model=model,
        index_set=bus_attrs['names'],
        bus_q_loads=bus_q_loads,
        gens_by_bus=gens_by_bus,
        **q_rhs_kwargs)

    ### declare the thermal limits
    libbranch.declare_ineq_s_branch_thermal_limit(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        s_thermal_limits=s_max,
        flow_type=FlowType.CURRENT)

    ### declare the voltage min and max inequalities
    libbus.declare_ineq_vm_bus_lbub(model=model,
                                    index_set=bus_attrs['names'],
                                    buses=buses,
                                    coordinate_type=CoordinateType.RECTANGULAR)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'],
                                                  q_costs=gen_attrs.get(
                                                      'q_cost', None))

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr
    if hasattr(model, 'qg_operating_cost'):
        obj_expr += sum(model.qg_operating_cost[gen_name]
                        for gen_name in model.qg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
Example #5
0
def create_psv_acopf_model(model_data, include_feasibility_slack=False):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads)
    model.pl.fix()
    model.ql.fix()

    ### declare the fixed shunts at the buses
    bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(
        buses, shunts)

    ### declare the polar voltages
    libbus.declare_var_vm(model,
                          bus_attrs['names'],
                          initialize=bus_attrs['vm'],
                          bounds=zip_items(bus_attrs['v_min'],
                                           bus_attrs['v_max']))

    libbus.declare_expr_vmsq(model=model,
                             index_set=bus_attrs['names'],
                             coordinate_type=CoordinateType.POLAR)

    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model,
                          bus_attrs['names'],
                          initialize=bus_attrs['va'],
                          bounds=va_bounds)

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    q_rhs_kwargs = {}
    if include_feasibility_slack:
        p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(
            model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real and reactive power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    qg_init = {
        k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0
        for k in gen_attrs['qg']
    }
    libgen.declare_var_qg(model,
                          gen_attrs['names'],
                          initialize=qg_init,
                          bounds=zip_items(gen_attrs['q_min'],
                                           gen_attrs['q_max']))

    ### declare the current flows in the branches
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    s_lbub = dict()
    for k in branches.keys():
        if s_max[k] is None:
            s_lbub[k] = (None, None)
        else:
            s_lbub[k] = (-s_max[k], s_max[k])
    pf_bounds = s_lbub
    pt_bounds = s_lbub
    qf_bounds = s_lbub
    qt_bounds = s_lbub
    pf_init = dict()
    pt_init = dict()
    qf_init = dict()
    qt_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])
        qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)
    libbranch.declare_var_pt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pt_init,
                             bounds=pt_bounds)
    libbranch.declare_var_qf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qf_init,
                             bounds=qf_bounds)
    libbranch.declare_var_qt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qt_init,
                             bounds=qt_bounds)

    ### declare the branch power flow constraints
    bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus'])
    unique_bus_pairs = list(
        OrderedDict((val, None) for idx, val in bus_pairs.items()).keys())
    libbranch.declare_expr_c(model=model,
                             index_set=unique_bus_pairs,
                             coordinate_type=CoordinateType.POLAR)
    libbranch.declare_expr_s(model=model,
                             index_set=unique_bus_pairs,
                             coordinate_type=CoordinateType.POLAR)
    libbranch.declare_eq_branch_power(model=model,
                                      index_set=branch_attrs['names'],
                                      branches=branches)

    ### declare the pq balances
    libbus.declare_eq_p_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_p_loads=bus_p_loads,
                                gens_by_bus=gens_by_bus,
                                bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                **p_rhs_kwargs)

    libbus.declare_eq_q_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_q_loads=bus_q_loads,
                                gens_by_bus=gens_by_bus,
                                bus_bs_fixed_shunts=bus_bs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                **q_rhs_kwargs)

    ### declare the thermal limits
    libbranch.declare_ineq_s_branch_thermal_limit(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        s_thermal_limits=s_max,
        flow_type=FlowType.POWER)

    ### declare the voltage min and max inequalities
    libbus.declare_ineq_vm_bus_lbub(model=model,
                                    index_set=bus_attrs['names'],
                                    buses=buses,
                                    coordinate_type=CoordinateType.POLAR)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.POLAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'],
                                                  q_costs=gen_attrs.get(
                                                      'q_cost', None))

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if include_feasibility_slack:
        obj_expr += penalty_expr
    if hasattr(model, 'qg_operating_cost'):
        obj_expr += sum(model.qg_operating_cost[gen_name]
                        for gen_name in model.qg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model, md
def create_gdp_subproblem(model, model_data, include_angle_diff_limits=False):
    md = model_data
    tx_utils.scale_ModelData_to_pu(md, inplace=True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model.subproblem = bi.SubModel(fixed=(model.u, model.v, model.w))

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)
    buses_with_loads = list(k for k in bus_p_loads.keys()
                            if bus_p_loads[k] != 0.)

    libbus.declare_var_pl(model.subproblem,
                          bus_attrs['names'],
                          initialize=bus_p_loads)
    model.subproblem.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model.subproblem,
                          bus_attrs['names'],
                          initialize=tx_utils.radians_from_degrees_dict(
                              bus_attrs['va']),
                          bounds=va_bounds)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.subproblem.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model.subproblem,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    ### declare the current flows in the branches
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k]))
        for k in bus_attrs['vm']
    }
    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k]))
        for k in bus_attrs['vm']
    }
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    p_lbub = {k: (-p_max[k], p_max[k]) for k in branches.keys()}
    pf_bounds = p_lbub
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])

    libbranch.declare_var_pf(model=model.subproblem,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)

    # need to include variable references on subproblem to variables, which exist on the master block
    bi.components.varref(model.subproblem)

    ### declare the branch power flow disjuncts (LHS is status quo, RHS is compromised)
    libbranch.declare_eq_branch_power_btheta_approx(
        model=model.subproblem,
        index_set=branch_attrs['names'],
        branches=branches)
    subcons.declare_eq_branch_power_off(model=model.subproblem,
                                        index_set=branch_attrs['names'],
                                        branches=branches)
    subcons.disjunctify(model=model.subproblem,
                        indicator_name='pf_branch_indicator',
                        disjunct_name='pf_branch_disjunct',
                        LHS_disjunct_set=model.subproblem.eq_pf_branch,
                        RHS_disjunct_set=model.subproblem.eq_pf_branch_off)

    ### declare the load shed disjuncts (LHS is status quo, RHS is compromised)
    subcons.declare_ineq_load_shed_ub(model=model.subproblem,
                                      index_set=buses_with_loads)
    subcons.declare_ineq_load_shed_lb(model=model.subproblem,
                                      index_set=buses_with_loads)
    subcons.declare_ineq_load_shed_lb_off(model=model.subproblem,
                                          index_set=buses_with_loads)
    subcons.disjunctify(
        model=model.subproblem,
        indicator_name='load_shed_indicator',
        disjunct_name='load_shed_disjunct',
        LHS_disjunct_set=model.subproblem.ineq_load_shed_lb,
        RHS_disjunct_set=model.subproblem.ineq_load_shed_lb_off)

    ### declare the generator disjuncts (LHS is status quo, RHS is compromised)
    subcons.declare_ineq_gen_on(model=model.subproblem,
                                index_set=gen_attrs['names'],
                                gens=gens)
    subcons.declare_ineq_gen_off(model=model.subproblem,
                                 index_set=gen_attrs['names'],
                                 gens=gens)
    subcons.disjunctify(model=model.subproblem,
                        indicator_name='gen_indicator',
                        disjunct_name='gen_disjunct',
                        LHS_disjunct_set=model.subproblem.ineq_gen,
                        RHS_disjunct_set=model.subproblem.ineq_gen_off)

    ### declare the p balance
    rhs_kwargs = {'include_feasibility_slack_neg': 'load_shed'}
    libbus.declare_eq_p_balance_dc_approx(
        model=model.subproblem,
        index_set=bus_attrs['names'],
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus,
        approximation_type=ApproximationType.BTHETA,
        **rhs_kwargs)

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(
        model=model.subproblem,
        index_set=branch_attrs['names'],
        branches=branches,
        p_thermal_limits=p_max,
        approximation_type=ApproximationType.BTHETA)

    ### declare angle difference limits on interconnected buses
    if include_angle_diff_limits:
        libbranch.declare_ineq_angle_diff_branch_lbub(
            model=model.subproblem,
            index_set=branch_attrs['names'],
            branches=branches,
            coordinate_type=CoordinateType.POLAR)

    model.subproblem.obj = pe.Objective(expr=sum(model.load_shed[l]
                                                 for l in buses_with_loads),
                                        sense=pe.minimize)

    return model, md
Example #7
0
def _btheta_dcopf_network_model(block, tm):
    m = block.model()

    buses = m._buses
    branches = m._branches

    branches_in_service = tuple(l for l in m.TransmissionLines
                                if not value(m.LineOutOfService[l, tm]))
    ## this will serve as a key into our dict of PTDF matricies,
    ## so that we can avoid recalculating them each time step
    ## with the same network topology
    branches_out_service = tuple(l for l in m.TransmissionLines
                                 if value(m.LineOutOfService[l, tm]))

    ## need the inlet/outlet relationship given some lines may be out
    inlet_branches_by_bus = dict()
    outlet_branches_by_bus = dict()
    for b in m.Buses:
        inlet_branches_by_bus[b] = list()
        for l in m.LinesTo[b]:
            if l not in branches_out_service:
                inlet_branches_by_bus[b].append(l)
        outlet_branches_by_bus[b] = list()
        for l in m.LinesFrom[b]:
            if l not in branches_out_service:
                outlet_branches_by_bus[b].append(l)

    ## this is not the "real" gens by bus, but the
    ## index of net injections from the UC model
    gens_by_bus = block.gens_by_bus

    ### declare (and fix) the loads at the buses
    bus_p_loads = {b: value(m.Demand[b, tm]) for b in m.Buses}

    libbus.declare_var_pl(block, buses.keys(), initialize=bus_p_loads)
    block.pl.fix()

    ### get the fixed shunts at the buses
    bus_gs_fixed_shunts = m._bus_gs_fixed_shunts

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in buses.keys()}
    libbus.declare_var_va(block,
                          buses.keys(),
                          initialize=None,
                          bounds=va_bounds)

    ### fix the reference bus
    ref_bus = value(m.ReferenceBus)
    ref_angle = value(m.ReferenceBusAngle)
    block.va[ref_bus].fix(math.radians(ref_angle))

    p_max = {k: branches[k]['rating_long_term'] for k in branches_in_service}
    p_lbub = {k: (-p_max[k], p_max[k]) for k in branches_in_service}
    pf_bounds = p_lbub

    libbranch.declare_var_pf(model=block,
                             index_set=branches_in_service,
                             initialize=None,
                             bounds=pf_bounds)

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(
        model=block, index_set=branches_in_service, branches=branches)

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(
        model=block,
        index_set=buses.keys(),
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus,
        approximation_type=ApproximationType.BTHETA)

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(
        model=block,
        index_set=branches_in_service,
        branches=branches,
        p_thermal_limits=p_max,
        approximation_type=ApproximationType.BTHETA)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=block,
        index_set=branches_in_service,
        branches=branches,
        coordinate_type=CoordinateType.POLAR)

    return block
Example #8
0
def create_explicit_subproblem(model,
                               subproblem,
                               model_data,
                               include_angle_diff_limits=False,
                               include_bigm=False):
    ### power system data
    md = model_data

    ### create dictionaries of object sets
    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    ### create dictionaries across object attributes for an object of the same set type
    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)
    buses_with_loads = list(k for k in bus_p_loads.keys()
                            if bus_p_loads[k] != 0.)

    ### declare load shed variables
    decl.declare_var('load_shed',
                     subproblem,
                     buses_with_loads,
                     initialize=0.0,
                     domain=pe.NonNegativeReals)

    #libbus.declare_var_pl(model.subproblem, bus_attrs['names'], initialize=bus_p_loads)
    #model.subproblem.pl.fix()
    subproblem.pl = bus_p_loads

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    va_init = {k: bus_attrs['va'][k] * (pi / 180) for k in bus_attrs['va']}
    libbus.declare_var_va(subproblem,
                          bus_attrs['names'],
                          initialize=bus_attrs['va'],
                          bounds=va_bounds)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    subproblem.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(subproblem, gen_attrs['names'], initialize=pg_init)

    ### declare the current flows in the branches
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])

    libbranch.declare_var_pf(model=subproblem,
                             index_set=branch_attrs['names'],
                             initialize=pf_init)

    # need to include variable references on subproblem to variables, which exist on the master block
    #bi.components.varref(subproblem, origin = model)
    subproblem.add_component("u", Reference(model.u))
    subproblem.add_component("v", Reference(model.v))
    subproblem.add_component("w", Reference(model.w))
    if include_bigm:
        # create big-M
        _create_bigm(subproblem, md)
        ### declare the branch power flow disjuncts
        subcons.declare_eq_branch_power_btheta_approx_bigM(
            model=subproblem,
            index_set=branch_attrs['names'],
            branches=branches)

        ### declare the real power flow limits
        p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
        subcons.declare_ineq_p_branch_thermal_lbub_switch(
            model=subproblem,
            index_set=branch_attrs['names'],
            p_thermal_limits=p_max)

    else:
        ### declare the branch power flow with indicator variable in the bilinear term
        subcons.declare_eq_branch_power_btheta_approx_nonlin(
            model=subproblem,
            index_set=branch_attrs['names'],
            branches=branches)

        ### declare the real power flow limits
        p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
        libbranch.declare_ineq_p_branch_thermal_lbub(
            model=subproblem,
            index_set=branch_attrs['names'],
            branches=branches,
            p_thermal_limits=p_max,
            approximation_type=ApproximationType.BTHETA)

    ### declare the load shed
    subcons.declare_ineq_load_shed(model=subproblem,
                                   index_set=buses_with_loads)

    ### declare the generator compromised
    subcons.declare_ineq_gen(model=subproblem,
                             index_set=gen_attrs['names'],
                             gens=gens)

    ### declare the p balance
    rhs_kwargs = {'include_feasibility_slack_neg': 'load_shed'}
    libbus.declare_eq_p_balance_dc_approx(
        model=subproblem,
        index_set=bus_attrs['names'],
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus,
        approximation_type=ApproximationType.BTHETA,
        **rhs_kwargs)

    ### declare angle difference limits on interconnected buses
    if include_angle_diff_limits:
        libbranch.declare_ineq_angle_diff_branch_lbub(
            model=subproblem,
            index_set=branch_attrs['names'],
            branches=branches,
            coordinate_type=CoordinateType.POLAR)

    ### lower-level objective for interdiction problem (opposite to upper-level objective)
    subproblem.obj = pe.Objective(expr=sum(subproblem.load_shed[l]
                                           for l in buses_with_loads),
                                  sense=pe.minimize)

    return model, md
Example #9
0
def _btheta_dcopf_network_model(md,block):
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)

    ## this is not the "real" gens by bus, but the
    ## index of net injections from the UC model
    gens_by_bus = block.gens_by_bus

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(block, bus_attrs['names'], initialize=bus_p_loads)
    block.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['names']}
    libbus.declare_var_va(block, bus_attrs['names'], initialize=None,
                          bounds=va_bounds
                          )

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    block.va[ref_bus].fix(0.0)

    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        raise ValueError('The BTHETA DCOPF formulation currently only supports'
                         ' a reference bus angle of 0 degrees, but an angle'
                         ' of {} degrees was found.'.format(ref_angle))

    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    p_lbub = {k: (-p_max[k],p_max[k]) for k in branches.keys()}
    pf_bounds = p_lbub

    libbranch.declare_var_pf(model=block,
                             index_set=branch_attrs['names'],
                             initialize=None,
                             bounds=pf_bounds
                             )

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(model=block,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches
                                                    )

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(model=block,
                                          index_set=bus_attrs['names'],
                                          bus_p_loads=bus_p_loads,
                                          gens_by_bus=gens_by_bus,
                                          bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                          inlet_branches_by_bus=inlet_branches_by_bus,
                                          outlet_branches_by_bus=outlet_branches_by_bus,
                                          approximation_type=ApproximationType.BTHETA
                                          )

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(model=block,
                                                 index_set=branch_attrs['names'],
                                                 branches=branches,
                                                 p_thermal_limits=p_max,
                                                 approximation_type=ApproximationType.BTHETA
                                                 )

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(model=block,
                                                  index_set=branch_attrs['names'],
                                                  branches=branches,
                                                  coordinate_type=CoordinateType.POLAR
                                                  )

    return block
Example #10
0
def create_btheta_dcopf_model(model_data):
    md = tx_utils.scale_ModelData_to_pu(model_data)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_in_service_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model,
                          bus_attrs['names'],
                          initialize=bus_attrs['va'],
                          bounds=va_bounds)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    model.va[ref_bus].fix(0.0)

    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        raise ValueError('The BTHETA DCOPF formulation currently only supports'
                         ' a reference bus angle of 0 degrees, but an angle'
                         ' of {} degrees was found.'.format(ref_angle))

    ### declare the generator real power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    ### declare the current flows in the branches
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    p_lbub = {k: (-p_max[k], p_max[k]) for k in branches.keys()}
    pf_bounds = p_lbub
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)

    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_dc_approx(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        approximation_type=ApproximationType.BTHETA)

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(
        model=model,
        index_set=bus_attrs['names'],
        bus_p_loads=bus_p_loads,
        gens_by_bus=gens_by_bus,
        bus_gs_fixed_shunts=bus_gs_fixed_shunts,
        inlet_branches_by_bus=inlet_branches_by_bus,
        outlet_branches_by_bus=outlet_branches_by_bus,
        approximation_type=ApproximationType.BTHETA)

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        p_thermal_limits=p_max,
        approximation_type=ApproximationType.BTHETA)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.POLAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'])

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model
Example #11
0
def create_rsv_acopf_model(model_data):
    md = tx_utils.scale_ModelData_to_pu(model_data)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')
    load_attrs = md.attributes(element_type='load')
    shunt_attrs = md.attributes(element_type='shunt')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_in_service_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads)
    model.pl.fix()
    model.ql.fix()

    ### declare the fixed shunts at the buses
    bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(
        buses, shunts)

    ### declare the rectangular voltages
    neg_v_max = map_items(op.neg, bus_attrs['v_max'])
    vr_init = {
        k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vr(model,
                          bus_attrs['names'],
                          initialize=vr_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    vj_init = {
        k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k])
        for k in bus_attrs['vm']
    }
    libbus.declare_var_vj(model,
                          bus_attrs['names'],
                          initialize=vj_init,
                          bounds=zip_items(neg_v_max, bus_attrs['v_max']))

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    model.vj[ref_bus].fix(0.0)
    model.vr[ref_bus].setlb(0.0)

    ref_angle = md.data['system']['reference_bus_angle']
    if ref_angle != 0.0:
        raise ValueError('The RSV ACOPF formulation currently only supports'
                         ' a reference bus angle of 0 degrees, but an angle'
                         ' of {} degrees was found.'.format(ref_angle))

    ### declare the generator real and reactive power
    pg_init = {
        k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0
        for k in gen_attrs['pg']
    }
    libgen.declare_var_pg(model,
                          gen_attrs['names'],
                          initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'],
                                           gen_attrs['p_max']))

    qg_init = {
        k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0
        for k in gen_attrs['qg']
    }
    libgen.declare_var_qg(model,
                          gen_attrs['names'],
                          initialize=qg_init,
                          bounds=zip_items(gen_attrs['q_min'],
                                           gen_attrs['q_max']))

    ### declare the current flows in the branches
    s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    s_lbub = {k: (-s_max[k], s_max[k]) for k in branches.keys()}
    pf_bounds = s_lbub
    pt_bounds = s_lbub
    qf_bounds = s_lbub
    qt_bounds = s_lbub
    pf_init = dict()
    pt_init = dict()
    qf_init = dict()
    qt_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus],
                                         vr_init[to_bus], vj_init[to_bus],
                                         y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])
        qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init,
                                                   vr_init[from_bus],
                                                   vj_init[from_bus])
        qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init,
                                                   vr_init[to_bus],
                                                   vj_init[to_bus])

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds)
    libbranch.declare_var_pt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pt_init,
                             bounds=pt_bounds)
    libbranch.declare_var_qf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qf_init,
                             bounds=qf_bounds)
    libbranch.declare_var_qt(model=model,
                             index_set=branch_attrs['names'],
                             initialize=qt_init,
                             bounds=qt_bounds)

    ### declare the branch power flow constraints
    libbranch.declare_eq_branch_power(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        branch_attrs=branch_attrs,
        coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the pq balances
    libbus.declare_eq_p_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_p_loads=bus_p_loads,
                                gens_by_bus=gens_by_bus,
                                bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                coordinate_type=CoordinateType.RECTANGULAR)

    libbus.declare_eq_q_balance(model=model,
                                index_set=bus_attrs['names'],
                                bus_q_loads=bus_q_loads,
                                gens_by_bus=gens_by_bus,
                                bus_bs_fixed_shunts=bus_bs_fixed_shunts,
                                inlet_branches_by_bus=inlet_branches_by_bus,
                                outlet_branches_by_bus=outlet_branches_by_bus,
                                coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the thermal limits
    libbranch.declare_ineq_s_branch_thermal_limit(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        s_thermal_limits=s_max,
        flow_type=FlowType.POWER)

    ### declare the voltage min and max inequalities
    libbus.declare_ineq_vm_bus_lbub(model=model,
                                    index_set=bus_attrs['names'],
                                    buses=buses,
                                    coordinate_type=CoordinateType.RECTANGULAR)

    ### declare angle difference limits on interconnected buses
    libbranch.declare_ineq_angle_diff_branch_lbub(
        model=model,
        index_set=branch_attrs['names'],
        branches=branches,
        coordinate_type=CoordinateType.RECTANGULAR)

    ### declare the generator cost objective
    libgen.declare_expression_pgqg_operating_cost(model=model,
                                                  index_set=gen_attrs['names'],
                                                  p_costs=gen_attrs['p_cost'],
                                                  q_costs=gen_attrs.get(
                                                      'q_cost', None))

    obj_expr = sum(model.pg_operating_cost[gen_name]
                   for gen_name in model.pg_operating_cost)
    if hasattr(model, 'qg_operating_cost'):
        obj_expr += sum(model.qg_operating_cost[gen_name]
                        for gen_name in model.qg_operating_cost)

    model.obj = pe.Objective(expr=obj_expr)

    return model
Example #12
0
def create_btheta_dcopf_model(model_data, include_angle_diff_limits=False, include_feasibility_slack=False, pw_cost_model='delta'):
    md = model_data.clone_in_service()
    tx_utils.scale_ModelData_to_pu(md, inplace = True)

    gens = dict(md.elements(element_type='generator'))
    buses = dict(md.elements(element_type='bus'))
    branches = dict(md.elements(element_type='branch'))
    loads = dict(md.elements(element_type='load'))
    shunts = dict(md.elements(element_type='shunt'))

    dc_branches = dict(md.elements(element_type='dc_branch'))

    gen_attrs = md.attributes(element_type='generator')
    bus_attrs = md.attributes(element_type='bus')
    branch_attrs = md.attributes(element_type='branch')

    inlet_branches_by_bus, outlet_branches_by_bus = \
        tx_utils.inlet_outlet_branches_by_bus(branches, buses)
    gens_by_bus = tx_utils.gens_by_bus(buses, gens)

    model = pe.ConcreteModel()

    ### declare (and fix) the loads at the buses
    bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads)

    libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads)
    model.pl.fix()

    ### declare the fixed shunts at the buses
    _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts)

    ### declare the polar voltages
    va_bounds = {k: (-pi, pi) for k in bus_attrs['va']}
    libbus.declare_var_va(model, bus_attrs['names'],
                          initialize=tx_utils.radians_from_degrees_dict(bus_attrs['va']),
                          bounds=va_bounds
                          )

    ### include the feasibility slack for the bus balances
    p_rhs_kwargs = {}
    penalty_expr = None
    if include_feasibility_slack:
        p_marginal_slack_penalty = _validate_and_extract_slack_penalty(md)        
        p_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs['names'], bus_p_loads,
                                                                gens_by_bus, gen_attrs, p_marginal_slack_penalty)

    ### fix the reference bus
    ref_bus = md.data['system']['reference_bus']
    ref_angle = md.data['system']['reference_bus_angle']
    model.va[ref_bus].fix(radians(ref_angle))

    ### declare the generator real power
    pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']}
    libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init,
                          bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])
                          )

    ### declare the current flows in the branches
    vr_init = {k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']}
    vj_init = {k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']}
    p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()}
    p_lbub = dict()
    for k in branches.keys():
        k_pmax = p_max[k]
        if k_pmax is None:
            p_lbub[k] = (None, None)
        else:
            p_lbub[k] = (-k_pmax,k_pmax)
    pf_bounds = p_lbub
    pf_init = dict()
    for branch_name, branch in branches.items():
        from_bus = branch['from_bus']
        to_bus = branch['to_bus']
        y_matrix = tx_calc.calculate_y_matrix_from_branch(branch)
        ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus],
                                         vj_init[to_bus], y_matrix)
        pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus])

    libbranch.declare_var_pf(model=model,
                             index_set=branch_attrs['names'],
                             initialize=pf_init,
                             bounds=pf_bounds
                             )

    if dc_branches:
        dcpf_bounds = dict()
        for k, k_dict in dc_branches.items():
            kp_max = k_dict['rating_long_term']
            if kp_max is None:
                dcpf_bounds[k] = (None, None)
            else:
                dcpf_bounds[k] = (-kp_max, kp_max)
        libbranch.declare_var_dcpf(model=model,
                                   index_set=dc_branches.keys(),
                                   initialize=0.,
                                   bounds=dcpf_bounds,
                                  )
        dc_inlet_branches_by_bus, dc_outlet_branches_by_bus = \
                tx_utils.inlet_outlet_branches_by_bus(dc_branches, buses)
    else:
        dc_inlet_branches_by_bus = None
        dc_outlet_branches_by_bus = None


    ### declare the branch power flow approximation constraints
    libbranch.declare_eq_branch_power_btheta_approx(model=model,
                                                    index_set=branch_attrs['names'],
                                                    branches=branches
                                                    )

    ### declare the p balance
    libbus.declare_eq_p_balance_dc_approx(model=model,
                                          index_set=bus_attrs['names'],
                                          bus_p_loads=bus_p_loads,
                                          gens_by_bus=gens_by_bus,
                                          bus_gs_fixed_shunts=bus_gs_fixed_shunts,
                                          inlet_branches_by_bus=inlet_branches_by_bus,
                                          outlet_branches_by_bus=outlet_branches_by_bus,
                                          approximation_type=ApproximationType.BTHETA,
                                          dc_inlet_branches_by_bus=dc_inlet_branches_by_bus,
                                          dc_outlet_branches_by_bus=dc_outlet_branches_by_bus,
                                          **p_rhs_kwargs
                                          )

    ### declare the real power flow limits
    libbranch.declare_ineq_p_branch_thermal_lbub(model=model,
                                                 index_set=branch_attrs['names'],
                                                 branches=branches,
                                                 p_thermal_limits=p_max,
                                                 approximation_type=ApproximationType.BTHETA
                                                 )

    ### declare angle difference limits on interconnected buses
    if include_angle_diff_limits:
        libbranch.declare_ineq_angle_diff_branch_lbub(model=model,
                                                      index_set=branch_attrs['names'],
                                                      branches=branches,
                                                      coordinate_type=CoordinateType.POLAR
                                                      )

    # declare the generator cost objective
    p_costs = gen_attrs['p_cost']
    pw_pg_cost_gens = list(libgen.pw_gen_generator(gen_attrs['names'], costs=p_costs))
    if len(pw_pg_cost_gens) > 0:
        if pw_cost_model == 'delta':
            libgen.declare_var_delta_pg(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs)
            libgen.declare_pg_delta_pg_con(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs)
        else:
            libgen.declare_var_pg_cost(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs)
            libgen.declare_piecewise_pg_cost_cons(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs)
    libgen.declare_expression_pg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=p_costs, pw_formulation=pw_cost_model)
    obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost)

    if include_feasibility_slack:
        obj_expr += penalty_expr

    model.obj = pe.Objective(expr=obj_expr)

    return model, md