def dict_of_branch_powers(branches, buses): """ Create a dictionary of the branch powers (with subkeys pf, qf, pt, qt) """ branch_powers = dict() branch_powers['pf'] = dict() branch_powers['qf'] = dict() branch_powers['pt'] = dict() branch_powers['qt'] = dict() for branch_name, branch in branches.items(): from_bus = buses[branch['from_bus']] to_bus = buses[branch['to_bus']] pf = 0 qf = 0 pt = 0 qt = 0 if branch['in_service'] \ and from_bus['vm'] is not None and from_bus['va'] is not None \ and to_bus['vm'] is not None and to_bus['va'] is not None: # we have all the information we need y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) vfr = tx_calc.calculate_vr_from_vm_va_degrees( from_bus['vm'], from_bus['va']) vfj = tx_calc.calculate_vj_from_vm_va_degrees( from_bus['vm'], from_bus['va']) vtr = tx_calc.calculate_vr_from_vm_va_degrees( to_bus['vm'], to_bus['va']) vtj = tx_calc.calculate_vj_from_vm_va_degrees( to_bus['vm'], to_bus['va']) ifr = tx_calc.calculate_ifr(vfr, vfj, vtr, vtj, y_matrix) ifj = tx_calc.calculate_ifj(vfr, vfj, vtr, vtj, y_matrix) itr = tx_calc.calculate_itr(vfr, vfj, vtr, vtj, y_matrix) itj = tx_calc.calculate_itj(vfr, vfj, vtr, vtj, y_matrix) pf = tx_calc.calculate_p(ifr, ifj, vfr, vfj) qf = tx_calc.calculate_q(ifr, ifj, vfr, vfj) pt = tx_calc.calculate_p(itr, itj, vtr, vtj) qt = tx_calc.calculate_q(itr, itj, vtr, vtj) branch_powers['pf'][branch_name] = pf branch_powers['qf'][branch_name] = qf branch_powers['pt'][branch_name] = pt branch_powers['qt'][branch_name] = qt return branch_powers
def create_psv_acopf_model(model_data, include_feasibility_slack=False): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts( buses, shunts) ### declare the polar voltages libbus.declare_var_vm(model, bus_attrs['names'], initialize=bus_attrs['vm'], bounds=zip_items(bus_attrs['v_min'], bus_attrs['v_max'])) libbus.declare_expr_vmsq(model=model, index_set=bus_attrs['names'], coordinate_type=CoordinateType.POLAR) va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'], bounds=va_bounds) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack( model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] ref_angle = md.data['system']['reference_bus_angle'] model.va[ref_bus].fix(radians(ref_angle)) ### declare the generator real and reactive power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) qg_init = { k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg'] } libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k], s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds) ### declare the branch power flow constraints bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus']) unique_bus_pairs = list( OrderedDict((val, None) for idx, val in bus_pairs.items()).keys()) libbranch.declare_expr_c(model=model, index_set=unique_bus_pairs, coordinate_type=CoordinateType.POLAR) libbranch.declare_expr_s(model=model, index_set=unique_bus_pairs, coordinate_type=CoordinateType.POLAR) libbranch.declare_eq_branch_power(model=model, index_set=branch_attrs['names'], branches=branches) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **p_rhs_kwargs) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **q_rhs_kwargs) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit( model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER) ### declare the voltage min and max inequalities libbus.declare_ineq_vm_bus_lbub(model=model, index_set=bus_attrs['names'], buses=buses, coordinate_type=CoordinateType.POLAR) ### declare angle difference limits on interconnected buses libbranch.declare_ineq_angle_diff_branch_lbub( model=model, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get( 'q_cost', None)) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model, md
def solve_acopf(model_data, solver, timelimit=None, solver_tee=True, symbolic_solver_labels=False, options=None, acopf_model_generator=create_psv_acopf_model, return_model=False, return_results=False, **kwargs): ''' Create and solve a new acopf model Parameters ---------- model_data : egret.data.ModelData An egret ModelData object with the appropriate data loaded. solver : str or pyomo.opt.base.solvers.OptSolver Either a string specifying a pyomo solver name, or an instantiated pyomo solver timelimit : float (optional) Time limit for dcopf run. Default of None results in no time limit being set. solver_tee : bool (optional) Display solver log. Default is True. symbolic_solver_labels : bool (optional) Use symbolic solver labels. Useful for debugging; default is False. options : dict (optional) Other options to pass into the solver. Default is dict(). acopf_model_generator : function (optional) Function for generating the acopf model. Default is egret.models.acopf.create_psv_acopf_model return_model : bool (optional) If True, returns the pyomo model object return_results : bool (optional) If True, returns the pyomo results object kwargs : dictionary (optional) Additional arguments for building model ''' import pyomo.environ as pe from pyomo.environ import value from egret.common.solver_interface import _solve_model from egret.model_library.transmission.tx_utils import \ scale_ModelData_to_pu, unscale_ModelData_to_pu m, md = acopf_model_generator(model_data, **kwargs) m.dual = pe.Suffix(direction=pe.Suffix.IMPORT) m, results = _solve_model(m, solver, timelimit=timelimit, solver_tee=solver_tee, symbolic_solver_labels=symbolic_solver_labels, options=options) # save results data to ModelData object gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) md.data['system']['total_cost'] = value(m.obj) for g, g_dict in gens.items(): g_dict['pg'] = value(m.pg[g]) g_dict['qg'] = value(m.qg[g]) for b, b_dict in buses.items(): b_dict['lmp'] = value(m.dual[m.eq_p_balance[b]]) b_dict['qlmp'] = value(m.dual[m.eq_q_balance[b]]) b_dict['pl'] = value(m.pl[b]) if hasattr(m, 'vj'): b_dict['vm'] = tx_calc.calculate_vm_from_vj_vr( value(m.vj[b]), value(m.vr[b])) b_dict['va'] = tx_calc.calculate_va_from_vj_vr( value(m.vj[b]), value(m.vr[b])) else: b_dict['vm'] = value(m.vm[b]) b_dict['va'] = value(m.va[b]) for k, k_dict in branches.items(): if hasattr(m, 'pf'): k_dict['pf'] = value(m.pf[k]) k_dict['pt'] = value(m.pt[k]) k_dict['qf'] = value(m.qf[k]) k_dict['qt'] = value(m.qt[k]) if hasattr(m, 'irf'): b = k_dict['from_bus'] k_dict['pf'] = value( tx_calc.calculate_p(value(m.ifr[k]), value(m.ifj[k]), value(m.vr[b]), value(m.vj[b]))) k_dict['qf'] = value( tx_calc.calculate_q(value(m.ifr[k]), value(m.ifj[k]), value(m.vr[b]), value(m.vj[b]))) b = k_dict['to_bus'] k_dict['pt'] = value( tx_calc.calculate_p(value(m.itr[k]), value(m.itj[k]), value(m.vr[b]), value(m.vj[b]))) k_dict['qt'] = value( tx_calc.calculate_q(value(m.itr[k]), value(m.itj[k]), value(m.vr[b]), value(m.vj[b]))) unscale_ModelData_to_pu(md, inplace=True) if return_model and return_results: return md, m, results elif return_model: return md, m elif return_results: return md, results return md
def create_ptdf_dcopf_model(model_data, include_feasibility_slack=False,base_point=BasePointType.FLATSTART): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) data_utils.create_dicts_of_ptdf(md,base_point=base_point) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) model.pl.fix() ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the generator real power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) ### include the feasibility slack for the system balance p_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, penalty_expr = _include_system_feasibility_slack(model, gen_attrs, bus_p_loads) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']} p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} p_lbub = {k: (-p_max[k],p_max[k]) for k in branches.keys()} pf_bounds = p_lbub pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) ### declare the branch power flow approximation constraints libbranch.declare_eq_branch_power_ptdf_approx(model=model, index_set=branch_attrs['names'], branches=branches, buses=buses, bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts ) ### declare the p balance libbus.declare_eq_p_balance_ed(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, **p_rhs_kwargs ) ### declare the real power flow limits libbranch.declare_ineq_p_branch_thermal_lbub(model=model, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.PTDF ) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'] ) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr model.obj = pe.Objective(expr=obj_expr) return model, md
def create_gdp_subproblem(model, model_data, include_angle_diff_limits=False): md = model_data tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model.subproblem = bi.SubModel(fixed=(model.u, model.v, model.w)) ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) buses_with_loads = list(k for k in bus_p_loads.keys() if bus_p_loads[k] != 0.) libbus.declare_var_pl(model.subproblem, bus_attrs['names'], initialize=bus_p_loads) model.subproblem.pl.fix() ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the polar voltages va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} libbus.declare_var_va(model.subproblem, bus_attrs['names'], initialize=tx_utils.radians_from_degrees_dict( bus_attrs['va']), bounds=va_bounds) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] ref_angle = md.data['system']['reference_bus_angle'] model.subproblem.va[ref_bus].fix(radians(ref_angle)) ### declare the generator real power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model.subproblem, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k])) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k])) for k in bus_attrs['vm'] } p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} p_lbub = {k: (-p_max[k], p_max[k]) for k in branches.keys()} pf_bounds = p_lbub pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) libbranch.declare_var_pf(model=model.subproblem, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) # need to include variable references on subproblem to variables, which exist on the master block bi.components.varref(model.subproblem) ### declare the branch power flow disjuncts (LHS is status quo, RHS is compromised) libbranch.declare_eq_branch_power_btheta_approx( model=model.subproblem, index_set=branch_attrs['names'], branches=branches) subcons.declare_eq_branch_power_off(model=model.subproblem, index_set=branch_attrs['names'], branches=branches) subcons.disjunctify(model=model.subproblem, indicator_name='pf_branch_indicator', disjunct_name='pf_branch_disjunct', LHS_disjunct_set=model.subproblem.eq_pf_branch, RHS_disjunct_set=model.subproblem.eq_pf_branch_off) ### declare the load shed disjuncts (LHS is status quo, RHS is compromised) subcons.declare_ineq_load_shed_ub(model=model.subproblem, index_set=buses_with_loads) subcons.declare_ineq_load_shed_lb(model=model.subproblem, index_set=buses_with_loads) subcons.declare_ineq_load_shed_lb_off(model=model.subproblem, index_set=buses_with_loads) subcons.disjunctify( model=model.subproblem, indicator_name='load_shed_indicator', disjunct_name='load_shed_disjunct', LHS_disjunct_set=model.subproblem.ineq_load_shed_lb, RHS_disjunct_set=model.subproblem.ineq_load_shed_lb_off) ### declare the generator disjuncts (LHS is status quo, RHS is compromised) subcons.declare_ineq_gen_on(model=model.subproblem, index_set=gen_attrs['names'], gens=gens) subcons.declare_ineq_gen_off(model=model.subproblem, index_set=gen_attrs['names'], gens=gens) subcons.disjunctify(model=model.subproblem, indicator_name='gen_indicator', disjunct_name='gen_disjunct', LHS_disjunct_set=model.subproblem.ineq_gen, RHS_disjunct_set=model.subproblem.ineq_gen_off) ### declare the p balance rhs_kwargs = {'include_feasibility_slack_neg': 'load_shed'} libbus.declare_eq_p_balance_dc_approx( model=model.subproblem, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA, **rhs_kwargs) ### declare the real power flow limits libbranch.declare_ineq_p_branch_thermal_lbub( model=model.subproblem, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.BTHETA) ### declare angle difference limits on interconnected buses if include_angle_diff_limits: libbranch.declare_ineq_angle_diff_branch_lbub( model=model.subproblem, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR) model.subproblem.obj = pe.Objective(expr=sum(model.load_shed[l] for l in buses_with_loads), sense=pe.minimize) return model, md
def create_explicit_subproblem(model, subproblem, model_data, include_angle_diff_limits=False, include_bigm=False): ### power system data md = model_data ### create dictionaries of object sets gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) ### create dictionaries across object attributes for an object of the same set type gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) buses_with_loads = list(k for k in bus_p_loads.keys() if bus_p_loads[k] != 0.) ### declare load shed variables decl.declare_var('load_shed', subproblem, buses_with_loads, initialize=0.0, domain=pe.NonNegativeReals) #libbus.declare_var_pl(model.subproblem, bus_attrs['names'], initialize=bus_p_loads) #model.subproblem.pl.fix() subproblem.pl = bus_p_loads ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the polar voltages va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} va_init = {k: bus_attrs['va'][k] * (pi / 180) for k in bus_attrs['va']} libbus.declare_var_va(subproblem, bus_attrs['names'], initialize=bus_attrs['va'], bounds=va_bounds) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] ref_angle = md.data['system']['reference_bus_angle'] subproblem.va[ref_bus].fix(radians(ref_angle)) ### declare the generator real power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(subproblem, gen_attrs['names'], initialize=pg_init) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) libbranch.declare_var_pf(model=subproblem, index_set=branch_attrs['names'], initialize=pf_init) # need to include variable references on subproblem to variables, which exist on the master block #bi.components.varref(subproblem, origin = model) subproblem.add_component("u", Reference(model.u)) subproblem.add_component("v", Reference(model.v)) subproblem.add_component("w", Reference(model.w)) if include_bigm: # create big-M _create_bigm(subproblem, md) ### declare the branch power flow disjuncts subcons.declare_eq_branch_power_btheta_approx_bigM( model=subproblem, index_set=branch_attrs['names'], branches=branches) ### declare the real power flow limits p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} subcons.declare_ineq_p_branch_thermal_lbub_switch( model=subproblem, index_set=branch_attrs['names'], p_thermal_limits=p_max) else: ### declare the branch power flow with indicator variable in the bilinear term subcons.declare_eq_branch_power_btheta_approx_nonlin( model=subproblem, index_set=branch_attrs['names'], branches=branches) ### declare the real power flow limits p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} libbranch.declare_ineq_p_branch_thermal_lbub( model=subproblem, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.BTHETA) ### declare the load shed subcons.declare_ineq_load_shed(model=subproblem, index_set=buses_with_loads) ### declare the generator compromised subcons.declare_ineq_gen(model=subproblem, index_set=gen_attrs['names'], gens=gens) ### declare the p balance rhs_kwargs = {'include_feasibility_slack_neg': 'load_shed'} libbus.declare_eq_p_balance_dc_approx( model=subproblem, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA, **rhs_kwargs) ### declare angle difference limits on interconnected buses if include_angle_diff_limits: libbranch.declare_ineq_angle_diff_branch_lbub( model=subproblem, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR) ### lower-level objective for interdiction problem (opposite to upper-level objective) subproblem.obj = pe.Objective(expr=sum(subproblem.load_shed[l] for l in buses_with_loads), sense=pe.minimize) return model, md
def solve_lpac(model_data, solver, ac_solver=None, timelimit=None, solver_tee=True, symbolic_solver_labels=False, options=None, ac_options=None, lpac_model_generator=create_cold_start_lpac_model, return_model=False, return_results=False, kwargs={}, kwargs_for_lpac={}): ''' Create and solve a new lpac model Parameters ---------- model_data : egret.data.ModelData An egret ModelData object with the appropriate data loaded. solver : str or pyomo.opt.base.solvers.OptSolver Either a string specifying a pyomo solver name, or an instantiated pyomo solver ac_solver : str or pyomo.opt.base.solvers.OptSolver (optional) Either a string specifying a pyomo solver name, or an instantiated pyomo solver. Default is None for the cold start lpac model. timelimit : float (optional) Time limit for dcopf run. Default of None results in no time limit being set. solver_tee : bool (optional) Display solver log. Default is True. symbolic_solver_labels : bool (optional) Use symbolic solver labels. Useful for debugging; default is False. options : dict (optional) Other options to pass into the (LPAC) solver. Default is dict(). ac_options : dict (optional) Other options to pass into the ACOPF solver. Default is dict(). lpac_model_generator : function (optional) Function for generating the lpac model. Default is the cold start lpac model return_model : bool (optional) If True, returns the pyomo model object return_results : bool (optional) If True, returns the pyomo results object kwargs : dictionary (optional) Additional arguments for building model. kwargs_for_lpac : dictionary (optional) Additional arguments for building lpac model (not used in ACOPF model) ''' import pyomo.environ as pe import pyomo.opt as po from pyomo.environ import value from egret.common.solver_interface import _solve_model from egret.model_library.transmission.tx_utils import \ scale_ModelData_to_pu, unscale_ModelData_to_pu if lpac_model_generator == create_hot_start_lpac_model or lpac_model_generator == create_warm_start_lpac_model: if ac_solver != None: ac_md, ac_m, ac_results = solve_acopf( model_data, ac_solver, options=ac_options, acopf_model_generator=create_psv_acopf_model, return_model=True, return_results=True, **kwargs) else: ac_md, ac_m, ac_results = solve_acopf( model_data, solver, options=options, acopf_model_generator=create_psv_acopf_model, return_model=True, return_results=True, **kwargs) voltages = dict({}) for bus in ac_md.elements(element_type="bus"): voltages[bus[0]] = bus[1]['vm'] #print(voltages) m, md = lpac_model_generator(model_data, voltages, **kwargs, **kwargs_for_lpac) else: m, md = lpac_model_generator(model_data, **kwargs, **kwargs_for_lpac) m, results, solver = _solve_model(m, solver, timelimit=timelimit, solver_tee=solver_tee, \ symbolic_solver_labels = symbolic_solver_labels, solver_options=options, return_solver=True) # save results data to ModelData object gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) md.data['system']['total_cost'] = value(m.obj) for g, g_dict in gens.items(): g_dict['pg'] = value(m.pg[g]) g_dict['qg'] = value(m.qg[g]) for b, b_dict in buses.items(): #b_dict['lmp'] = value(m.dual[m.eq_p_balance[b]]) #b_dict['qlmp'] = value(m.dual[m.eq_q_balance[b]]) b_dict['pl'] = value(m.pl[b]) #if hasattr(m, 'vj'): #b_dict['vm'] = tx_calc.calculate_vm_from_vj_vr(value(m.vj[b]), value(m.vr[b])) #b_dict['va'] = tx_calc.calculate_va_from_vj_vr(value(m.vj[b]), value(m.vr[b])) #else: #b_dict['vm'] = value(m.vm[b]) #b_dict['va'] = value(m.va[b]) for k, k_dict in branches.items(): if hasattr(m, 'pf'): k_dict['pf'] = value(m.pf[k]) k_dict['pt'] = value(m.pt[k]) k_dict['qf'] = value(m.qf[k]) k_dict['qt'] = value(m.qt[k]) if hasattr(m, 'irf'): b = k_dict['from_bus'] k_dict['pf'] = value( tx_calc.calculate_p(value(m.ifr[k]), value(m.ifj[k]), value(m.vr[b]), value(m.vj[b]))) k_dict['qf'] = value( tx_calc.calculate_q(value(m.ifr[k]), value(m.ifj[k]), value(m.vr[b]), value(m.vj[b]))) b = k_dict['to_bus'] k_dict['pt'] = value( tx_calc.calculate_p(value(m.itr[k]), value(m.itj[k]), value(m.vr[b]), value(m.vj[b]))) k_dict['qt'] = value( tx_calc.calculate_q(value(m.itr[k]), value(m.itj[k]), value(m.vr[b]), value(m.vj[b]))) unscale_ModelData_to_pu(md, inplace=True) #print(buses) #print(gens) # print(branches) if return_model and return_results: return md, m, results elif return_model: return md, m elif return_results: return md, results return md
def _create_base_acpf_model(model_data): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus']) unique_bus_pairs = list(OrderedDict((val, None) for idx, val in bus_pairs.items())) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) libbus.declare_var_vmsq(model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()} ) libbranch.declare_var_c(model=model, index_set=unique_bus_pairs) libbranch.declare_var_s(model=model, index_set=unique_bus_pairs) ### declare the generator real and reactive power #pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=gen_attrs['pg']) #qg_init = {k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg']} libgen.declare_var_qg(model, gen_attrs['names'], initialize=gen_attrs['qg']) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init ) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init ) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init ) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init ) ### declare the branch power flow constraints libbranch.declare_eq_branch_power(model=model, index_set=branch_attrs['names'], branches=branches ) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus ) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus ) # if there are multiple generators at the same bus, we will # have unwanted degrees of freedom in qg # therefore, we add a constraint making them equal # if the reference bus has multiple generators, we will also # have unwanted degrees of freedom in pg #ref_bus = md.data['system']['reference_bus'] qg_equality_tuples = list() #pg_equality_tuples = list() for b, genlist in gens_by_bus.items(): if len(genlist) > 1: # we have more than one generator at this bus for i in range(1,len(genlist)): qg_equality_tuples.append((genlist[0], genlist[i])) # if b == ref_bus: # pg_equality_tuples.append((genlist[0], genlist[i])) def _qg_equalities(m,i,j): return m.qg[i] == m.qg[j] model.qg_equalities = pe.Constraint(qg_equality_tuples, rule=_qg_equalities) #def _pg_equalities(m,i,j): # return m.pg[i] == m.pg[j] #model.pg_equalities = pe.Constraint(pg_equality_tuples, rule=_pg_equalities) model.obj = pe.Objective(expr=0.0) return model, md
def create_cold_start_lpac_model(model_data, cosine_segment_count=20, lower_bound=-pi / 3, upper_bound=pi / 3, include_feasibility_slack=False, mode="uniform"): """ The cold start LPAC model assumes that no target voltages are available and that all voltages are initially approximated as 1 pu. """ ###Grid data md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare the polar voltages libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va']) libbus.declare_var_vmsq( model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()}, bounds=zip_items({k: v**2 for k, v in bus_attrs['v_min'].items()}, {k: v**2 for k, v in bus_attrs['v_max'].items()})) ### declare the voltage change variables decl.declare_var('phi', model, bus_attrs['names']) ### declare the cosine approximation variables cos_hat_bounds = {k: (0, 1) for k in branch_attrs['names']} decl.declare_var('cos_hat', model, branch_attrs['names'], bounds=cos_hat_bounds) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] #ref_angle = md.data['system']['reference_bus_angle'] model.va[ref_bus].fix(radians(0.0)) ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts( buses, shunts) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack( model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads) ### declare the generator real and reactive power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) qg_init = { k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg'] } libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k], s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds) ################################ #Constraints ################################ ### Balance equations at a bus (based on Kirchhoff Current Law) #Should be able to just use DC OPF approximation of B-theta type? ### declare the p balance libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA, **p_rhs_kwargs) #Need one also for q balance libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **q_rhs_kwargs) ### Constraints for power in a branch branch_con_set = decl.declare_set('_con_eq_p_q_lpac_branch_power', model, branch_attrs['names']) model.eq_pf_branch_t = pe.Constraint(branch_con_set) model.eq_pt_branch_t = pe.Constraint(branch_con_set) model.eq_qf_branch_t = pe.Constraint(branch_con_set) model.eq_qt_branch_t = pe.Constraint(branch_con_set) for branch_name in branch_con_set: branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) model.eq_pf_branch_t[branch_name] = \ model.pf[branch_name] == \ g - g * model.cos_hat[branch_name] - b * (model.va[from_bus] - model.va[to_bus]) model.eq_pt_branch_t[branch_name] = \ model.pt[branch_name] == \ g - g * model.cos_hat[branch_name] - b * (model.va[to_bus] - model.va[from_bus]) model.eq_qf_branch_t[branch_name] = \ model.qf[branch_name] == \ -b - g*(model.va[from_bus] - model.va[to_bus]) + b*model.cos_hat[branch_name] - b*(model.phi[from_bus] - model.phi[to_bus]) model.eq_qt_branch_t[branch_name] = \ model.qt[branch_name] == \ -b - g*(model.va[to_bus] - model.va[from_bus]) +b*model.cos_hat[branch_name] - b*(model.phi[to_bus] - model.phi[from_bus]) ### Piecewise linear cosine constraints model.N = pe.Set(initialize=list(range(cosine_segment_count + 1))) declare_pwl_cosine_bounds(model=model, index_set=branch_attrs['names'], branches=branches, lower_bound=lower_bound, upper_bound=upper_bound, cosine_segment_count=cosine_segment_count, mode=mode) ### Objective is to maximize cosine hat variables # obj_expr = sum(model.cos_hat[branch_name] for branch_name in branch_attrs['names']) # if include_feasibility_slack: # obj_expr += penalty_expr # model.obj = pe.Objective(expr=obj_expr) ###Objective to match with acopf.py ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get( 'q_cost', None)) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model, md
def create_btheta_dcopf_model(model_data): md = tx_utils.scale_ModelData_to_pu(model_data) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_in_service_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) model.pl.fix() ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the polar voltages va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'], bounds=va_bounds) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] model.va[ref_bus].fix(0.0) ref_angle = md.data['system']['reference_bus_angle'] if ref_angle != 0.0: raise ValueError('The BTHETA DCOPF formulation currently only supports' ' a reference bus angle of 0 degrees, but an angle' ' of {} degrees was found.'.format(ref_angle)) ### declare the generator real power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} p_lbub = {k: (-p_max[k], p_max[k]) for k in branches.keys()} pf_bounds = p_lbub pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) ### declare the branch power flow approximation constraints libbranch.declare_eq_branch_power_dc_approx( model=model, index_set=branch_attrs['names'], branches=branches, approximation_type=ApproximationType.BTHETA) ### declare the p balance libbus.declare_eq_p_balance_dc_approx( model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA) ### declare the real power flow limits libbranch.declare_ineq_p_branch_thermal_lbub( model=model, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.BTHETA) ### declare angle difference limits on interconnected buses libbranch.declare_ineq_angle_diff_branch_lbub( model=model, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost']) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model
def _create_base_power_ac_model(model_data, include_feasibility_slack=False, pw_cost_model='delta'): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus']) unique_bus_pairs = list(OrderedDict((val, None) for idx, val in bus_pairs.items())) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) libbus.declare_var_vmsq(model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()}, bounds=zip_items({k: v**2 for k, v in bus_attrs['v_min'].items()}, {k: v**2 for k, v in bus_attrs['v_max'].items()})) libbranch.declare_var_c(model=model, index_set=unique_bus_pairs, initialize=1) libbranch.declare_var_s(model=model, index_set=unique_bus_pairs, initialize=0) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_marginal_slack_penalty, q_marginal_slack_penalty = _validate_and_extract_slack_penalties(md) p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs['names'], bus_p_loads, bus_q_loads, gens_by_bus, gen_attrs, p_marginal_slack_penalty, q_marginal_slack_penalty) ### declare the generator real and reactive power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) qg_init = {k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg']} libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max']) ) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k],s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds ) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds ) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds ) ### declare the branch power flow constraints libbranch.declare_eq_branch_power(model=model, index_set=branch_attrs['names'], branches=branches ) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **p_rhs_kwargs ) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **q_rhs_kwargs ) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit(model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER ) # declare angle difference limits on interconnected buses libbranch.declare_ineq_angle_diff_branch_lbub_c_s(model=model, index_set=branch_attrs['names'], branches=branches ) # declare the generator cost objective p_costs = gen_attrs['p_cost'] pw_pg_cost_gens = list(libgen.pw_gen_generator(gen_attrs['names'], costs=p_costs)) if len(pw_pg_cost_gens) > 0: if pw_cost_model == 'delta': libgen.declare_var_delta_pg(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_pg_delta_pg_con(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) else: libgen.declare_var_pg_cost(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_piecewise_pg_cost_cons(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_expression_pg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=p_costs, pw_formulation=pw_cost_model) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) q_costs = gen_attrs.get('q_cost', None) if q_costs is not None: pw_qg_cost_gens = list(libgen.pw_gen_generator(gen_attrs['names'], costs=q_costs)) if len(pw_qg_cost_gens) > 0: if pw_cost_model == 'delta': libgen.declare_var_delta_qg(model=model, index_set=pw_qg_cost_gens, q_costs=q_costs) libgen.declare_qg_delta_qg_con(model=model, index_set=pw_qg_cost_gens, q_costs=q_costs) else: libgen.declare_var_qg_cost(model=model, index_set=pw_qg_cost_gens, q_costs=q_costs) libgen.declare_piecewise_qg_cost_cons(model=model, index_set=pw_qg_cost_gens, q_costs=q_costs) libgen.declare_expression_qg_operating_cost(model=model, index_set=gen_attrs['names'], q_costs=q_costs, pw_formulation=pw_cost_model) obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr model.obj = pe.Objective(expr=obj_expr) return model, md
def create_socp_acopf_model(model_data, include_feasibility_slack=False): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the rectangular voltages neg_v_max = map_items(op.neg, bus_attrs['v_max']) vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']} # libbus.declare_var_vr(model, bus_attrs['names'], initialize=vr_init, # bounds=zip_items(neg_v_max, bus_attrs['v_max']) # ) vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']} # libbus.declare_var_vj(model, bus_attrs['names'], initialize=vj_init, # bounds=zip_items(neg_v_max, bus_attrs['v_max']) # ) # w variable for socp vj2_init = {k: (bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]))**2 for k in bus_attrs['vm']} vr2_init = {k: (bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]))**2 for k in bus_attrs['vm']} w_init = {k: vr2_init[k]+vj2_init[k] for k in vj2_init} wub = {k:bus_attrs['v_max'][k]**2 for k in bus_attrs['v_max']} wlb = {k:bus_attrs['v_min'][k]**2 for k in bus_attrs['v_min']} ## v_min**2 <= w <= v_max**2 libbus.declare_var_w(model, bus_attrs['names'], initialize = w_init, bounds =zip_items(wlb,wub)) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads) ### fix the reference bus # ref_bus = md.data['system']['reference_bus'] # ref_angle = md.data['system']['reference_bus_angle'] # if ref_angle != 0.0: # libbus.declare_eq_ref_bus_nonzero(model, ref_angle, ref_bus) # else: # model.vj[ref_bus].fix(0.0) # model.vr[ref_bus].setlb(0.0) ### declare the generator real and reactive power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) qg_init = {k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg']} libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max']) ) ### declare the current flows in the branches s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k],s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() cbk_init = dict() sbk_init = dict() cbk_bounds = dict() sbk_bounds = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] ba_max = branch['angle_diff_max'] ba_min = branch['angle_diff_min'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) #SOCP related variable bounds and init cbk_init[from_bus,to_bus] = vr_init[from_bus]*vr_init[to_bus] + vj_init[from_bus]*vj_init[to_bus] sbk_init[from_bus,to_bus] = vr_init[from_bus]*vj_init[to_bus] - vr_init[to_bus]*vj_init[from_bus] if ba_max is None and ba_min is None: cbk_bounds[from_bus,to_bus] = ( bus_attrs['v_min'][from_bus]*bus_attrs['v_min'][to_bus]*min(pe.cos(-math.pi/2),pe.cos(math.pi/2)), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*1.0) sbk_bounds[from_bus,to_bus] = ( bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(-math.pi/2), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(math.pi/2)) if ba_max > 0 and ba_min < 0: cbk_bounds[from_bus,to_bus] = (bus_attrs['v_min'][from_bus]*bus_attrs['v_min'][to_bus]*min(pe.cos(ba_max * math.pi/180),pe.cos(ba_min * math.pi/180)), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*1.0) sbk_bounds[from_bus,to_bus] = ( bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(ba_min * math.pi/180), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(math.pi/2)) if ba_max <= 0: cbk_bounds[from_bus,to_bus] = (bus_attrs['v_min'][from_bus]*bus_attrs['v_min'][to_bus]*pe.cos(ba_min * math.pi/180), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.cos(ba_max * math.pi/180)) sbk_bounds[from_bus,to_bus] = ( bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(ba_min * math.pi/180), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(math.pi/2)) if ba_min >= 0: cbk_bounds[from_bus,to_bus] = (bus_attrs['v_min'][from_bus]*bus_attrs['v_min'][to_bus]*pe.cos(ba_max * math.pi/180), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.cos(ba_min * math.pi/180)) sbk_bounds[from_bus,to_bus] = ( bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(ba_min * math.pi/180), bus_attrs['v_max'][from_bus]*bus_attrs['v_max'][to_bus]*pe.sin(math.pi/2)) #print(bus_attrs) #print(branch_attrs) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds ) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds ) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds ) bus_pairs = zip_items(branch_attrs['from_bus'],branch_attrs['to_bus']) unique_bus_pairs = list(set([val for idx,val in bus_pairs.items()])) libbranch.declare_var_c(model = model, index_set = unique_bus_pairs, initialize = cbk_init, bounds = cbk_bounds ) libbranch.declare_var_s(model = model, index_set = unique_bus_pairs, initialize = sbk_init, bounds = sbk_bounds ) ### declare the branch power flow constraints libbranch.declare_eq_branch_power_socp(model=model, index_set=branch_attrs['names'], branches=branches, branch_attrs=branch_attrs, coordinate_type=CoordinateType.RECTANGULAR ) ### declare the pq balances libbus.declare_eq_p_balance_socp(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, coordinate_type=CoordinateType.RECTANGULAR, **p_rhs_kwargs ) libbus.declare_eq_q_balance_socp(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, coordinate_type=CoordinateType.RECTANGULAR, **q_rhs_kwargs ) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit(model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER ) ### declare the voltage min and max inequalities # libbus.declare_ineq_vm_bus_lbub(model=model, # index_set=bus_attrs['names'], # buses=buses, # coordinate_type=CoordinateType.RECTANGULAR # ) ### declare angle difference limits on interconnected buses # libbranch.declare_ineq_angle_diff_branch_lbub(model=model, # index_set=branch_attrs['names'], # branches=branches, # coordinate_type=CoordinateType.RECTANGULAR # ) libbranch.declare_socp_scw(model = model, index_set = branch_attrs['names'], branches = branches, branch_attrs = branch_attrs) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get('q_cost', None) ) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model, md
def create_rsv_acopf_model(model_data): md = tx_utils.scale_ModelData_to_pu(model_data) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_in_service_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts( buses, shunts) ### declare the rectangular voltages neg_v_max = map_items(op.neg, bus_attrs['v_max']) vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } libbus.declare_var_vr(model, bus_attrs['names'], initialize=vr_init, bounds=zip_items(neg_v_max, bus_attrs['v_max'])) vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } libbus.declare_var_vj(model, bus_attrs['names'], initialize=vj_init, bounds=zip_items(neg_v_max, bus_attrs['v_max'])) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] model.vj[ref_bus].fix(0.0) model.vr[ref_bus].setlb(0.0) ref_angle = md.data['system']['reference_bus_angle'] if ref_angle != 0.0: raise ValueError('The RSV ACOPF formulation currently only supports' ' a reference bus angle of 0 degrees, but an angle' ' of {} degrees was found.'.format(ref_angle)) ### declare the generator real and reactive power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) qg_init = { k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg'] } libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max'])) ### declare the current flows in the branches s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = {k: (-s_max[k], s_max[k]) for k in branches.keys()} pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds) ### declare the branch power flow constraints libbranch.declare_eq_branch_power( model=model, index_set=branch_attrs['names'], branches=branches, branch_attrs=branch_attrs, coordinate_type=CoordinateType.RECTANGULAR) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, coordinate_type=CoordinateType.RECTANGULAR) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, coordinate_type=CoordinateType.RECTANGULAR) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit( model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER) ### declare the voltage min and max inequalities libbus.declare_ineq_vm_bus_lbub(model=model, index_set=bus_attrs['names'], buses=buses, coordinate_type=CoordinateType.RECTANGULAR) ### declare angle difference limits on interconnected buses libbranch.declare_ineq_angle_diff_branch_lbub( model=model, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.RECTANGULAR) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get( 'q_cost', None)) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model
def create_btheta_dcopf_model(model_data, include_angle_diff_limits=False, include_feasibility_slack=False, pw_cost_model='delta'): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) dc_branches = dict(md.elements(element_type='dc_branch')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) model.pl.fix() ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the polar voltages va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} libbus.declare_var_va(model, bus_attrs['names'], initialize=tx_utils.radians_from_degrees_dict(bus_attrs['va']), bounds=va_bounds ) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} penalty_expr = None if include_feasibility_slack: p_marginal_slack_penalty = _validate_and_extract_slack_penalty(md) p_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs['names'], bus_p_loads, gens_by_bus, gen_attrs, p_marginal_slack_penalty) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] ref_angle = md.data['system']['reference_bus_angle'] model.va[ref_bus].fix(radians(ref_angle)) ### declare the generator real power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(radians(bus_attrs['va'][k])) for k in bus_attrs['vm']} p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} p_lbub = dict() for k in branches.keys(): k_pmax = p_max[k] if k_pmax is None: p_lbub[k] = (None, None) else: p_lbub[k] = (-k_pmax,k_pmax) pf_bounds = p_lbub pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) if dc_branches: dcpf_bounds = dict() for k, k_dict in dc_branches.items(): kp_max = k_dict['rating_long_term'] if kp_max is None: dcpf_bounds[k] = (None, None) else: dcpf_bounds[k] = (-kp_max, kp_max) libbranch.declare_var_dcpf(model=model, index_set=dc_branches.keys(), initialize=0., bounds=dcpf_bounds, ) dc_inlet_branches_by_bus, dc_outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(dc_branches, buses) else: dc_inlet_branches_by_bus = None dc_outlet_branches_by_bus = None ### declare the branch power flow approximation constraints libbranch.declare_eq_branch_power_btheta_approx(model=model, index_set=branch_attrs['names'], branches=branches ) ### declare the p balance libbus.declare_eq_p_balance_dc_approx(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA, dc_inlet_branches_by_bus=dc_inlet_branches_by_bus, dc_outlet_branches_by_bus=dc_outlet_branches_by_bus, **p_rhs_kwargs ) ### declare the real power flow limits libbranch.declare_ineq_p_branch_thermal_lbub(model=model, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.BTHETA ) ### declare angle difference limits on interconnected buses if include_angle_diff_limits: libbranch.declare_ineq_angle_diff_branch_lbub(model=model, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR ) # declare the generator cost objective p_costs = gen_attrs['p_cost'] pw_pg_cost_gens = list(libgen.pw_gen_generator(gen_attrs['names'], costs=p_costs)) if len(pw_pg_cost_gens) > 0: if pw_cost_model == 'delta': libgen.declare_var_delta_pg(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_pg_delta_pg_con(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) else: libgen.declare_var_pg_cost(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_piecewise_pg_cost_cons(model=model, index_set=pw_pg_cost_gens, p_costs=p_costs) libgen.declare_expression_pg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=p_costs, pw_formulation=pw_cost_model) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr model.obj = pe.Objective(expr=obj_expr) return model, md
def _create_base_relaxation(model_data): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus']) unique_bus_pairs = list( OrderedDict((val, None) for idx, val in bus_pairs.items())) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts( buses, shunts) libbus.declare_var_vmsq( model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()}, bounds=zip_items({k: v**2 for k, v in bus_attrs['v_min'].items()}, {k: v**2 for k, v in bus_attrs['v_max'].items()})) libbranch.declare_var_c(model=model, index_set=unique_bus_pairs) libbranch.declare_var_s(model=model, index_set=unique_bus_pairs) ### declare the generator real and reactive power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) qg_init = { k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg'] } libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k], s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds) ### declare the branch power flow constraints libbranch.declare_eq_branch_power(model=model, index_set=branch_attrs['names'], branches=branches) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit( model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get( 'q_cost', None)) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model, md
def create_hot_start_lpac_model(model_data, voltages, lower_bound=-pi / 3, upper_bound=pi / 3, cosine_segment_count=20, include_feasibility_slack=False, mode="uniform"): """ The hot start LPAC model assumes that voltages are known, e.g. from an AC base point solution. """ ###Grid data md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace=True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ###declare (and fix) the voltage magnitudes and squares of voltage magnitudes bus_voltage_magnitudes = voltages #Assumes voltages is given as a dictionary libbus.declare_var_vm(model, bus_attrs['names'], initialize=bus_voltage_magnitudes) model.vm.fix() libbus.declare_var_vmsq( model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()}, bounds=zip_items({k: v**2 for k, v in bus_attrs['v_min'].items()}, {k: v**2 for k, v in bus_attrs['v_max'].items()})) ### declare the polar voltages libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va']) ### declare the cosine approximation variables cos_hat_bounds = {k: (0, 1) for k in branch_attrs['names']} decl.declare_var('cos_hat', model, branch_attrs['names'], bounds=cos_hat_bounds) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] #ref_angle = md.data['system']['reference_bus_angle'] model.va[ref_bus].fix(radians(0.0)) ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts( buses, shunts) ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack( model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads) ### declare the generator real and reactive power pg_init = { k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg'] } libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max'])) qg_init = { k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg'] } libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max'])) ### declare the current flows in the branches vr_init = { k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm'] } vj_init = { k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm'] } s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k], s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds) #################### #Constraints #################### ###Balance equations in a bus #p balance libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **p_rhs_kwargs) #q balance libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **q_rhs_kwargs) ### Power in a branch branch_con_set = decl.declare_set('_con_eq_p_q_lpac_branch_power', model, branch_attrs['names']) model.eq_pf_branch_t = pe.Constraint(branch_con_set) model.eq_pt_branch_t = pe.Constraint(branch_con_set) model.eq_qf_branch_t = pe.Constraint(branch_con_set) model.eq_qt_branch_t = pe.Constraint(branch_con_set) for branch_name in branch_con_set: branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) model.eq_pf_branch_t[branch_name] = \ model.pf[branch_name] == \ g*model.vmsq[from_bus] - model.vm[from_bus]*model.vm[to_bus]*(g * model.cos_hat[branch_name] + b * (model.va[from_bus] - model.va[to_bus])) model.eq_pt_branch_t[branch_name] = \ model.pt[branch_name] == \ g*model.vmsq[to_bus] - model.vm[from_bus]*model.vm[to_bus]*(g * model.cos_hat[branch_name] + b * (model.va[to_bus] - model.va[from_bus])) model.eq_qf_branch_t[branch_name] = \ model.qf[branch_name] == \ -b*model.vmsq[from_bus] - model.vm[from_bus]*model.vm[to_bus]*(g*(model.va[from_bus] - model.va[to_bus]) - b*model.cos_hat[branch_name]) model.eq_qt_branch_t[branch_name] = \ model.qt[branch_name] == \ -b*model.vmsq[to_bus] - model.vm[from_bus]*model.vm[to_bus]*(g*(model.va[to_bus] - model.va[from_bus]) - b*model.cos_hat[branch_name]) ### Piecewise linear cosine constraints model.N = pe.Set(initialize=list(range(cosine_segment_count + 1))) declare_pwl_cosine_bounds(model=model, index_set=branch_attrs['names'], branches=branches, lower_bound=lower_bound, upper_bound=upper_bound, cosine_segment_count=cosine_segment_count, mode=mode) ### Objective is to maximize cosine hat variables obj_expr = sum(model.cos_hat[branch_name] for branch_name in branch_attrs['names']) if include_feasibility_slack: obj_expr += penalty_expr model.obj = pe.Objective(expr=obj_expr) return model, md
def create_btheta_losses_dcopf_model(model_data, relaxation_type=RelaxationType.SOC, include_angle_diff_limits=False, include_feasibility_slack=False): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') load_attrs = md.attributes(element_type='load') shunt_attrs = md.attributes(element_type='shunt') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, _ = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) model.pl.fix() ### declare the fixed shunts at the buses _, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) ### declare the polar voltages va_bounds = {k: (-pi, pi) for k in bus_attrs['va']} libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'], bounds=va_bounds ) dva_initialize = {k: 0.0 for k in branch_attrs['names']} libbranch.declare_var_dva(model, branch_attrs['names'], initialize=dva_initialize ) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} penalty_expr = None if include_feasibility_slack: p_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs, gen_attrs, bus_p_loads) ### fix the reference bus ref_bus = md.data['system']['reference_bus'] ref_angle = md.data['system']['reference_bus_angle'] model.va[ref_bus].fix(radians(ref_angle)) ### declare the generator real power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']} p_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} pf_bounds = {k: (-p_max[k],p_max[k]) for k in branches.keys()} pf_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pfl_bounds = {k: (0,p_max[k]**2) for k in branches.keys()} pfl_init = {k: 0 for k in branches.keys()} libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) libbranch.declare_var_pfl(model=model, index_set=branch_attrs['names'], initialize=pfl_init, bounds=pfl_bounds ) ### declare the angle difference constraint libbranch.declare_eq_branch_dva(model=model, index_set=branch_attrs['names'], branches=branches ) ### declare the branch power flow approximation constraints libbranch.declare_eq_branch_power_btheta_approx(model=model, index_set=branch_attrs['names'], branches=branches, approximation_type=ApproximationType.BTHETA_LOSSES ) ### declare the branch power loss approximation constraints libbranch.declare_eq_branch_loss_btheta_approx(model=model, index_set=branch_attrs['names'], branches=branches, relaxation_type=relaxation_type ) ### declare the p balance libbus.declare_eq_p_balance_dc_approx(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, approximation_type=ApproximationType.BTHETA_LOSSES, **p_rhs_kwargs ) ### declare the real power flow limits libbranch.declare_ineq_p_branch_thermal_lbub(model=model, index_set=branch_attrs['names'], branches=branches, p_thermal_limits=p_max, approximation_type=ApproximationType.BTHETA ) ### declare angle difference limits on interconnected buses if include_angle_diff_limits: libbranch.declare_ineq_angle_diff_branch_lbub(model=model, index_set=branch_attrs['names'], branches=branches, coordinate_type=CoordinateType.POLAR ) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'] ) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr model.obj = pe.Objective(expr=obj_expr) return model, md
def _create_base_ac_with_pwl_approx_model(model_data, branch_dict, Q, include_feasibility_slack=False): md = model_data.clone_in_service() tx_utils.scale_ModelData_to_pu(md, inplace = True) gens = dict(md.elements(element_type='generator')) buses = dict(md.elements(element_type='bus')) branches = dict(md.elements(element_type='branch')) loads = dict(md.elements(element_type='load')) shunts = dict(md.elements(element_type='shunt')) gen_attrs = md.attributes(element_type='generator') bus_attrs = md.attributes(element_type='bus') branch_attrs = md.attributes(element_type='branch') inlet_branches_by_bus, outlet_branches_by_bus = \ tx_utils.inlet_outlet_branches_by_bus(branches, buses) gens_by_bus = tx_utils.gens_by_bus(buses, gens) bus_pairs = zip_items(branch_attrs['from_bus'], branch_attrs['to_bus']) unique_bus_pairs = list(OrderedDict((val, None) for idx, val in bus_pairs.items())) model = pe.ConcreteModel() ### declare (and fix) the loads at the buses bus_p_loads, bus_q_loads = tx_utils.dict_of_bus_loads(buses, loads) libbus.declare_var_pl(model, bus_attrs['names'], initialize=bus_p_loads) libbus.declare_var_ql(model, bus_attrs['names'], initialize=bus_q_loads) model.pl.fix() model.ql.fix() ### declare the fixed shunts at the buses bus_bs_fixed_shunts, bus_gs_fixed_shunts = tx_utils.dict_of_bus_fixed_shunts(buses, shunts) libbus.declare_var_vm(model=model, index_set=bus_attrs['names'], initialize=bus_attrs['vm'], bounds=zip_items(bus_attrs['v_min'], bus_attrs['v_max'])) libbus.declare_var_vmsq(model=model, index_set=bus_attrs['names'], initialize={k: v**2 for k, v in bus_attrs['vm'].items()}, bounds=zip_items({k: v**2 for k, v in bus_attrs['v_min'].items()}, {k: v**2 for k, v in bus_attrs['v_max'].items()})) # libbranch.declare_var_c(model=model, index_set=unique_bus_pairs) # libbranch.declare_var_s(model=model, index_set=unique_bus_pairs) ### declare the polar voltages va_bounds = {k: (-math.pi, math.pi) for k in bus_attrs['va']} libbus.declare_var_va(model, bus_attrs['names'], initialize=bus_attrs['va'], bounds=va_bounds ) ###declare the phase angle differences in each branch libbranch.declare_var_dva(model, index_set=unique_bus_pairs) libbranch.declare_eq_delta_va(model, index_set=unique_bus_pairs) ### include the feasibility slack for the bus balances p_rhs_kwargs = {} q_rhs_kwargs = {} if include_feasibility_slack: p_rhs_kwargs, q_rhs_kwargs, penalty_expr = _include_feasibility_slack(model, bus_attrs, gen_attrs, bus_p_loads, bus_q_loads) ### declare the generator real and reactive power pg_init = {k: (gen_attrs['p_min'][k] + gen_attrs['p_max'][k]) / 2.0 for k in gen_attrs['pg']} libgen.declare_var_pg(model, gen_attrs['names'], initialize=pg_init, bounds=zip_items(gen_attrs['p_min'], gen_attrs['p_max']) ) qg_init = {k: (gen_attrs['q_min'][k] + gen_attrs['q_max'][k]) / 2.0 for k in gen_attrs['qg']} libgen.declare_var_qg(model, gen_attrs['names'], initialize=qg_init, bounds=zip_items(gen_attrs['q_min'], gen_attrs['q_max']) ) ### declare the current flows in the branches vr_init = {k: bus_attrs['vm'][k] * pe.cos(bus_attrs['va'][k]) for k in bus_attrs['vm']} vj_init = {k: bus_attrs['vm'][k] * pe.sin(bus_attrs['va'][k]) for k in bus_attrs['vm']} s_max = {k: branches[k]['rating_long_term'] for k in branches.keys()} s_lbub = dict() for k in branches.keys(): if s_max[k] is None: s_lbub[k] = (None, None) else: s_lbub[k] = (-s_max[k],s_max[k]) pf_bounds = s_lbub pt_bounds = s_lbub qf_bounds = s_lbub qt_bounds = s_lbub pf_init = dict() pt_init = dict() qf_init = dict() qt_init = dict() for branch_name, branch in branches.items(): from_bus = branch['from_bus'] to_bus = branch['to_bus'] y_matrix = tx_calc.calculate_y_matrix_from_branch(branch) ifr_init = tx_calc.calculate_ifr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) ifj_init = tx_calc.calculate_ifj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itr_init = tx_calc.calculate_itr(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) itj_init = tx_calc.calculate_itj(vr_init[from_bus], vj_init[from_bus], vr_init[to_bus], vj_init[to_bus], y_matrix) pf_init[branch_name] = tx_calc.calculate_p(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) pt_init[branch_name] = tx_calc.calculate_p(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) qf_init[branch_name] = tx_calc.calculate_q(ifr_init, ifj_init, vr_init[from_bus], vj_init[from_bus]) qt_init[branch_name] = tx_calc.calculate_q(itr_init, itj_init, vr_init[to_bus], vj_init[to_bus]) libbranch.declare_var_pf(model=model, index_set=branch_attrs['names'], initialize=pf_init, bounds=pf_bounds ) libbranch.declare_var_pt(model=model, index_set=branch_attrs['names'], initialize=pt_init, bounds=pt_bounds ) libbranch.declare_var_qf(model=model, index_set=branch_attrs['names'], initialize=qf_init, bounds=qf_bounds ) libbranch.declare_var_qt(model=model, index_set=branch_attrs['names'], initialize=qt_init, bounds=qt_bounds ) ### declare the branch power flow constraints ### declare a binary on/off variable for deenergizing a given branch decl.declare_var('u', model=model, index_set=branch_attrs['names'], within=pe.Binary) model.u.fix(1) branch_name_set = decl.declare_set('branch_name', model=model, index_set=branch_attrs['names']) model.box_index_set = pe.RangeSet(Q) model.power_type_set = pe.Set(initialize=[0,1]) #Note: 0 is for power_type == "Active"; 1 is for power_type=="Reactive" #For active power energization/deenergization model.u_branch = pe.Var(branch_name_set, model.box_index_set, model.power_type_set, within=pe.Binary) #For selecting the appropriate interval of the PWL approximation model.dva_branch = pe.Var(branch_name_set, model.box_index_set, model.power_type_set) #(5) - Constraints for the on/off variable u def u_sum_rule(model, branch_name, j): return model.u[branch_name] == sum(model.u_branch[branch_name, i, j] for i in model.box_index_set) model.u_sum_Constr = pe.Constraint(branch_name_set, model.power_type_set, rule=u_sum_rule) #(6) - Constraints that sum of dva variables should be equal to total dva #Upper bound constraints def delta_branch_ub_rule(model, branch_name, j): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] return -model.dva[(from_bus, to_bus)] + sum(model.dva_branch[branch_name, i, j] for i in model.box_index_set) <= math.pi*(1-model.u[branch_name]) model.delta_branch_ub_Constr = pe.Constraint(branch_name_set, model.power_type_set, rule=delta_branch_ub_rule) #Lower bound constraints def delta_branch_lb_rule(model, branch_name, j): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] return -model.dva[(from_bus, to_bus)] + sum(model.dva_branch[branch_name, i, j] for i in model.box_index_set) >= -math.pi*(1-model.u[branch_name]) model.delta_branch_lb_Constr = pe.Constraint(branch_name_set, model.power_type_set, rule=delta_branch_lb_rule) #(7) - Constraints that force dva variable to be in only one interval #Upper bound def delta_branch_box_ub_rule(model, branch_name, i, j): if j==0: delta_ub = branch_dict["Active_from_bus"][branch_name]['boxes']['coords'][i-1][7][2] else: delta_ub = branch_dict["Reactive_from_bus"][branch_name]['boxes']['coords'][i-1][7][2] return model.dva_branch[branch_name, i, j] <= delta_ub*model.u_branch[branch_name, i, j] model.delta_branch_box_ub_Constr = pe.Constraint(branch_name_set, model.box_index_set, model.power_type_set, rule=delta_branch_box_ub_rule) def delta_branch_box_lb_rule(model, branch_name, i, j): if j==0: delta_lb = branch_dict["Active_from_bus"][branch_name]['boxes']['coords'][i-1][0][2] else: delta_lb = branch_dict["Reactive_from_bus"][branch_name]['boxes']['coords'][i-1][0][2] return model.dva_branch[branch_name, i, j] >= delta_lb*model.u_branch[branch_name, i, j] model.delta_branch_box_lb_Constr = pe.Constraint(branch_name_set, model.box_index_set, model.power_type_set, rule=delta_branch_box_lb_rule) #(8) - Approximating power flow equation by PWL approximation #Active_from_bus def pwl_active_from_ub_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Active_from_bus"][branch_name]['boxes']['coefficients'][i-1] #M = 10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3]) M = 2*s_max[branch_name] + 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.pf[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 0] + coeffs[3] <= M*(1-model.u_branch[branch_name, i, 0]) model.pwl_active_from_ub_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_active_from_ub_rule) def pwl_active_from_lb_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Active_from_bus"][branch_name]['boxes']['coefficients'][i-1] #M = -(10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3])) M = -2*s_max[branch_name] - 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.pf[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 0] + coeffs[3] >= M*(1-model.u_branch[branch_name, i, 0]) model.pwl_active_from_lb_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_active_from_lb_rule) #Active_to_bus def pwl_active_to_ub_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Active_to_bus"][branch_name]['boxes']['coefficients'][i-1] #M = 10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3]) M = 2*s_max[branch_name] + 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.pt[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 0] + coeffs[3] <= M*(1-model.u_branch[branch_name, i, 0]) model.pwl_active_to_ub_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_active_to_ub_rule) def pwl_active_to_lb_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Active_to_bus"][branch_name]['boxes']['coefficients'][i-1] #M = -(10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3])) M = -2*s_max[branch_name] - 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.pt[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 0] + coeffs[3] >= M*(1-model.u_branch[branch_name, i, 0]) model.pwl_active_to_lb_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_active_to_lb_rule) #Reactive_from_bus def pwl_reactive_from_ub_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Reactive_from_bus"][branch_name]['boxes']['coefficients'][i-1] #M = 10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3]) M = 2*s_max[branch_name] + 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.qf[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 1] + coeffs[3] <= M*(1-model.u_branch[branch_name, i, 1]) model.pwl_reactive_from_ub_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_reactive_from_ub_rule) def pwl_reactive_from_lb_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Reactive_from_bus"][branch_name]['boxes']['coefficients'][i-1] #M = -(10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3])) M = -2*s_max[branch_name] - 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.qf[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 1] + coeffs[3] >= M*(1-model.u_branch[branch_name, i, 1]) model.pwl_reactive_from_lb_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_reactive_from_lb_rule) #Reactive_to_bus def pwl_reactive_to_ub_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Reactive_to_bus"][branch_name]['boxes']['coefficients'][i-1] #M = 10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3]) M = 2*s_max[branch_name] + 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.qt[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 1] + coeffs[3] <= M*(1-model.u_branch[branch_name, i, 1]) model.pwl_reactive_to_ub_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_reactive_to_ub_rule) def pwl_reactive_to_lb_rule(model, branch_name, i): branch = branches[branch_name] from_bus = branch['from_bus'] to_bus = branch['to_bus'] g = tx_calc.calculate_conductance(branch) b = tx_calc.calculate_susceptance(branch) coeffs = branch_dict["Reactive_to_bus"][branch_name]['boxes']['coefficients'][i-1] #M = -(10*(g+b) + 4*(coeffs[0]+coeffs[1]+coeffs[2]+coeffs[3])) M = -2*s_max[branch_name] - 10*(np.abs(coeffs[0])+np.abs(coeffs[1])+np.abs(coeffs[2])+np.abs(coeffs[3])) return -model.qt[branch_name] + coeffs[0]*model.vm[from_bus] + coeffs[1]*model.vm[to_bus] + coeffs[2]*model.dva_branch[branch_name, i, 1] + coeffs[3] >= M*(1-model.u_branch[branch_name, i, 1]) model.pwl_reactive_to_lb_Constr = pe.Constraint(branch_name_set, model.box_index_set, rule=pwl_reactive_to_lb_rule) ### declare the pq balances libbus.declare_eq_p_balance(model=model, index_set=bus_attrs['names'], bus_p_loads=bus_p_loads, gens_by_bus=gens_by_bus, bus_gs_fixed_shunts=bus_gs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **p_rhs_kwargs ) libbus.declare_eq_q_balance(model=model, index_set=bus_attrs['names'], bus_q_loads=bus_q_loads, gens_by_bus=gens_by_bus, bus_bs_fixed_shunts=bus_bs_fixed_shunts, inlet_branches_by_bus=inlet_branches_by_bus, outlet_branches_by_bus=outlet_branches_by_bus, **q_rhs_kwargs ) ### declare the thermal limits libbranch.declare_ineq_s_branch_thermal_limit(model=model, index_set=branch_attrs['names'], branches=branches, s_thermal_limits=s_max, flow_type=FlowType.POWER ) # declare angle difference limits on interconnected buses # libbranch.declare_ineq_angle_diff_branch_lbub_c_s(model=model, # index_set=branch_attrs['names'], # branches=branches # ) ### declare the generator cost objective libgen.declare_expression_pgqg_operating_cost(model=model, index_set=gen_attrs['names'], p_costs=gen_attrs['p_cost'], q_costs=gen_attrs.get('q_cost', None) ) obj_expr = sum(model.pg_operating_cost[gen_name] for gen_name in model.pg_operating_cost) if include_feasibility_slack: obj_expr += penalty_expr if hasattr(model, 'qg_operating_cost'): obj_expr += sum(model.qg_operating_cost[gen_name] for gen_name in model.qg_operating_cost) model.obj = pe.Objective(expr=obj_expr) return model, md