Example #1
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            mapping = mapper.WorkloadBased(W).mapping()
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        # Orange AHPparition(PA) operator in paper can be expressed
        # as the following sequence of simpler opeartors
        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, self.ratio * eps).measure(x, prng)
        xest = inference.AHPThresholding(self.eta, self.ratio).infer(M, y, eps)
        mapping = mapper.AHPCluster(xest, (1 - self.ratio) * eps).mapping()

        # TR
        reducer = transformation.ReduceByPartition(mapping)

        x_bar = reducer.transform(x)
        # SI LM LS
        M_bar = selection.Identity(x_bar.shape).select()
        y_bar = measurement.Laplace(M_bar, eps * (1 - self.ratio)).measure(
            x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y_bar)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        return x_hat
Example #2
0
    def Run(self, W, x, eps):
        if self.workload_based:
            x, W = workload_based(x=x, W=W)

        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain_shape into 1d
            hilbert_mapping = hilbert(self.domain_shape)

            x = x.reduce_by_partition(hilbert_mapping)

            W = W * support.expansion_matrix(hilbert_mapping)

        mapping = x.dawa(self.ratio, self.approx, eps)
        x_bar = x.reduce_by_partition(mapping)

        W_bar = W * support.expansion_matrix(mapping)
        M_bar = greedyH((len(set(mapping)), ), W_bar)
        y = x_bar.laplace(M_bar, eps * (1 - self.ratio))
        x_bar_hat = least_squares(M_bar, y)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        if len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_hat

        return x_hat
Example #3
0
    def Run(self, W, x, eps):
        W = get_matrix(W)
        striped_mapping = striped(self.domain_shape, self.stripe_dim)
        x_sub_list = x.split_by_partition(striped_mapping)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        for i in group_idx:
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = W * P_i.T

            mapping = x_i.dawa(self.ratio, self.approx, eps)

            x_bar = x_i.reduce_by_partition(mapping)
            W_bar = W_i * support.expansion_matrix(mapping)
            M_bar = greedyH((len(set(mapping)), ), W_bar)
            y_i = x_bar.laplace(M_bar, eps * (1 - self.ratio))
            W_bar = W_i * support.expansion_matrix(mapping)

            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(laplace_scale_factor(M_bar, eps))

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Example #4
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain into 1d
            hilbert_mapping = mapper.HilbertTransform(
                self.domain_shape).mapping()
            domain_reducer = transformation.ReduceByPartition(hilbert_mapping)

            x = domain_reducer.transform(x)
            W = W.get_matrix() * support.expansion_matrix(hilbert_mapping)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)
        elif len(self.domain_shape) == 1:
            W = W.get_matrix()
            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)

        reducer = transformation.ReduceByPartition(mapping)
        x_bar = reducer.transform(x)
        W_bar = W * support.expansion_matrix(mapping)

        M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
        y = measurement.Laplace(M_bar,
                                eps * (1 - self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y)

        x_bar_hat_exp = support.expansion_matrix(mapping) * x_bar_hat

        if len(self.domain_shape) == 1:
            return x_bar_hat_exp
        elif len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_bar_hat_exp
Example #5
0
    def Run(self, W, x, eps):
        mapping = x.dawa(self.ratio, self.approx, eps)
        x_bar = x.reduce_by_partition(mapping)
        W_bar = W.get_matrix() * support.expansion_matrix(mapping)
        M_bar = greedyH((len(set(mapping)), ), W_bar)
        y = x_bar.laplace(M_bar, eps)
        x_bar_hat = least_squares(M_bar, y)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        return x_hat
Example #6
0
    def Run(self, W, x, eps, seed):
        domain_dimension = len(self.domain_shape)
        eps_share = util.old_div(float(eps), domain_dimension)

        x = x.flatten()
        prng = np.random.RandomState(seed)
        
        Ms = []
        ys = []
        scale_factors = []
        for i in range(domain_dimension):
            # Reducde domain to get marginals
            marginal_mapping = mapper.MarginalPartition(
                domain_shape=self.domain_shape, proj_dim=i).mapping()
            reducer = transformation.ReduceByPartition(marginal_mapping)
            x_i = reducer.transform(x)

            if self.domain_shape[i] < 50:
                # run identity subplan
                M_i = selection.Identity(x_i.shape).select()
                y_i = measurement.Laplace(M_i, eps_share).measure(x_i, prng)
                noise_scale_factor = laplace_scale_factor(
                    M_i, eps_share)
                
            else:
                # run dawa subplan
                W = get_matrix(W)

                W_i = W * support.expansion_matrix(marginal_mapping)

                dawa = pmapper.Dawa(eps_share, self.ratio, self.approx)
                mapping = dawa.mapping(x_i, prng)

                reducer = transformation.ReduceByPartition(mapping)
                x_bar = reducer.transform(x_i)
                W_bar = W_i * support.expansion_matrix(mapping)

                M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
                y_i = measurement.Laplace(
                    M_bar, eps_share * (1 - self.ratio)).measure(x_bar, prng)

                noise_scale_factor = laplace_scale_factor(
                    M_bar, eps_share * (1 - self.ratio))

                # expand the dawa reduction
                M_i = M_bar * support.reduction_matrix(mapping)

            MM = M_i * support.reduction_matrix(marginal_mapping)
            Ms.append(MM)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares(method='lsmr').infer(Ms, ys, scale_factors)

        return x_hat  
Example #7
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)
            self.domain_shape = x.shape


        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain into 1d
            hilbert_mapping = mapper.HilbertTransform(self.domain_shape).mapping()
            domain_reducer = transformation.ReduceByPartition(hilbert_mapping)

            x = domain_reducer.transform(x)

            W = get_matrix(W)
            W = W * support.expansion_matrix(hilbert_mapping)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)

        elif len(self.domain_shape) == 1:

            W = get_matrix(W)
            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)


        reducer = transformation.ReduceByPartition(mapping)
        x_bar = reducer.transform(x)
        W_bar = W * support.expansion_matrix(mapping)

        M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
        if not isinstance(M_bar, np.ndarray):
            M_bar = M_bar.toarray()
        y = measurement.Laplace(M_bar, eps*(1-self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y)

        x_bar_hat_exp = support.expansion_matrix(mapping) * x_bar_hat


        if len(self.domain_shape) == 1:
            return x_bar_hat_exp
        elif len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_bar_hat_exp
Example #8
0
    def Run(self, W, x, eps):
        domain_dimension = len(self.domain_shape)
        eps_share = util.old_div(float(eps), domain_dimension)

        Ms = []
        ys = []
        scale_factors = []
        for i in range(domain_dimension):
            # Reducde domain to get marginals
            marginal_mapping = marginal_partition(self.domain_shape, i)

            x_i = x.reduce_by_partition(marginal_mapping)

            if self.domain_shape[i] < 50:
                # run identity subplan

                M_i = identity((self.domain_shape[i], ))
                y_i = x_i.laplace(M_i, eps_share)
                noise_scale_factor = laplace_scale_factor(M_i, eps_share)

            else:
                # run dawa subplan
                W_i = W * support.expansion_matrix(marginal_mapping)

                mapping = x_i.dawa(self.ratio, self.approx, eps_share)
                x_bar = x_i.reduce_by_partition(mapping)
                W_bar = W_i * support.expansion_matrix(mapping)

                M_bar = greedyH((len(set(mapping)), ), W_bar)
                y_i = x_bar.laplace(M_bar, eps_share * (1 - self.ratio))

                noise_scale_factor = laplace_scale_factor(
                    M_bar, eps_share * (1 - self.ratio))

                # expand the dawa reduction
                M_i = M_bar * support.reduction_matrix(mapping)

            # TODO: Ideally this would be just M_i * support.reduction_matrix(marginal_mapping)
            # but currently that returns an int type matrix
            # because the type of P_i is int
            MM = (support.reduction_matrix(marginal_mapping).T * M_i.T).T
            Ms.append(MM)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Example #9
0
def workload_based(x, W=None):
    '''workload-based domain reduction
    '''
    mapping = mapper.WorkloadBased(W).mapping()
    x = x.reduce_by_partition(mapping)
    if W is not None:
        W = support.get_matrix(W)
        W = W * support.expansion_matrix(mapping)
    return x, W
Example #10
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()            
        prng = np.random.RandomState(seed)

        striped_vectors = mapper.Striped(self.domain, self.stripe_dim).partitions()
        hd_vector = support.combine_all(striped_vectors)
        striped_mapping = hd_vector.flatten()

        x_sub_list = meta.SplitByPartition(striped_mapping).transform(x)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        # Given a group id on the full vector, recover the group id for each partition
        # put back in loop to save memory
        self.subgroups = {}
        for i in group_idx:
            selected_idx = np.where(hd_vector == i)
            ans = [p[i[0]] for p, i in zip(striped_vectors, selected_idx)]
            self.subgroups[i] = ans

        for i in group_idx: 
            x_i = x_sub_list[group_idx.index(i)]
            
            # overwriting standard projection for efficiency
            W_i = self.project_workload(W, striped_vectors, hd_vector, i)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x_i, prng)
            reducer = transformation.ReduceByPartition(mapping)
            x_bar = reducer.transform(x_i)
            W_bar = W_i * support.expansion_matrix(mapping)

            M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
            if not isinstance(M_bar, np.ndarray):
                M_bar = M_bar.toarray()

            y_i = measurement.Laplace(
                M_bar, eps * (1 - self.ratio)).measure(x_bar, prng)

            noise_scale_factor = laplace_scale_factor(
                M_bar, eps * (1 - self.ratio))

            # convert the measurement back to the original domain for inference
            P_i = support.projection_matrix(striped_mapping, i)
            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares().infer(Ms, ys, scale_factors)

        return x_hat
Example #11
0
    def Run(self, W, x, eps):
        mapping = x.ahp_partition(self.n, self.ratio, self.eta, eps)
        x_bar = x.reduce_by_partition(mapping)

        M_bar = identity((len(set(mapping)), ))
        y_bar = x_bar.laplace(M_bar, eps * (1 - self.ratio))

        x_bar_hat = least_squares(M_bar, y_bar)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        return x_hat
Example #12
0
    def Run(self, W, x, eps):

        striped_vectors = striped_partition(self.domain_shape, self.stripe_dim)
        hd_vector = support.combine_all(striped_vectors)
        striped_mapping = hd_vector.flatten()

        x_sub_list = x.split_by_partition(striped_mapping)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        # Given a group id on the full vector, recover the group id for each partition
        # put back in loop to save memory
        self.subgroups = {}
        for i in group_idx:
            selected_idx = np.where(hd_vector == i)
            ans = [p[i[0]] for p, i in zip(striped_vectors, selected_idx)]
            self.subgroups[i] = ans

        for i in group_idx:
            x_i = x_sub_list[group_idx.index(i)]

            # overwriting standard projection for efficiency
            W_i = self.project_workload(W, striped_vectors, hd_vector, i)

            mapping = x_i.dawa(self.ratio, self.approx, eps)
            x_bar = x_i.reduce_by_partition(mapping)

            W_bar = W_i * support.expansion_matrix(mapping)
            M_bar = greedyH((len(set(mapping)), ), W_bar)
            y_i = x_bar.laplace(M_bar, eps * (1 - self.ratio))

            noise_scale_factor = laplace_scale_factor(M_bar,
                                                      eps * (1 - self.ratio))

            # convert the measurement back to the original domain for inference
            P_i = support.projection_matrix(striped_mapping, i)
            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(laplace_scale_factor(M_bar, eps))

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Example #13
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        if self.workload_based:
            mapping = mapper.WorkloadBased(W).mapping()
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat
Example #14
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()            
        prng = np.random.RandomState(seed)

        striped_mapping = mapper.Striped(self.domain, self.stripe_dim).mapping()
        x_sub_list = meta.SplitByPartition(striped_mapping).transform(x)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        W = get_matrix(W)

        for i in group_idx: 
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = W * P_i.T

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x_i, prng)
            reducer = transformation.ReduceByPartition(mapping)
            x_bar = reducer.transform(x_i)
            W_bar = W_i * support.expansion_matrix(mapping)

            M_bar = selection.GreedyH(x_bar.shape, W_bar).select()

            if not isinstance(M_bar, np.ndarray):
                M_bar = M_bar.toarray()

            y_i = measurement.Laplace(
                M_bar, eps * (1 - self.ratio)).measure(x_bar, prng)

            noise_scale_factor = laplace_scale_factor(
                M_bar, eps * (1 - self.ratio))

            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares().infer(Ms, ys, scale_factors)

        return x_hat
Example #15
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)
            self.domain_shape = x.shape

        M = selection.HB(self.domain_shape).select()

        if not isinstance(M, np.ndarray):
            M = M.toarray()

        y  = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat
Example #16
0
def Client(kernel_service, domain, eta, ratio, n):
    """ This is the code that would run on the client side. The client 
        creates a protected data source, which it queries from time to time. 
        The client also manipulates data returned from the protected data 
        source by applying public operators locally.
    """
    # Protected data source mediates client-side access to kernel service
    R = cservice.ProtectedDataSource(kernel_service)

    # Filter data
    R = R.where('age >= 30 and age <= 39')
    R = R.project(['income'])

    # Transform relation to vector
    x = R.vectorize(domain)

    # Use fraction "ratio" of budget to determine reduced mapping
    mapping = x.ahp_partition(n, ratio, eta, eps_total)

    # Reduce x according to this mapping
    x_bar = x.reduce_by_partition(mapping)

    # Use remaining budget to get noisy x from reduced domain
    M_bar = identity((len(set(mapping)), ))
    y_bar = x_bar.laplace(M_bar, eps_total * (1 - ratio))

    # Infer actual x from noisy answer
    x_bar_hat = non_negative_least_squares(M_bar, y_bar)

    # project inferred x back to original domain
    x_hat = support.expansion_matrix(mapping) * x_bar_hat

    # A Prefix workload of queries
    W = workload.Prefix1D(n)

    # Report query results
    print(W.get_matrix() * x_hat)
Example #17
0
    def test_complimentary_reduction_expansion(self):
        R = support.reduction_matrix(self.mapping)
        E = support.expansion_matrix(self.mapping)

        np.testing.assert_array_equal((R * E).toarray(), np.eye(5))
Example #18
0
    def test_expansion_matrix(self):
        M = support.expansion_matrix(self.mapping).toarray()

        self.assertEqual(M.shape, (10, 5))
        np.testing.assert_array_equal(np.nonzero(M)[1], self.mapping)