Example #1
0
 def arithmetic_op_fields(self, display_name, arithmetic_series):
     if self._arithmetic_op_fields_task is None:
         self._arithmetic_op_fields_task = ArithmeticOpFieldsTask(
             display_name, arithmetic_series)
     else:
         self._arithmetic_op_fields_task.update(display_name,
                                                arithmetic_series)
Example #2
0
class Operations:
    """
    A collector of the queries and selectors we apply to queries to return the appropriate results.

    For example,
        - a list of the field_names in the DataFrame (a subset of field_names in the index)
        - a size limit on the results (e.g. for head(n=5))
        - a query to filter the results (e.g. df.A > 10)

    This is maintained as a 'task graph' (inspired by dask)
    (see https://docs.dask.org/en/latest/spec.html)
    """

    def __init__(self, tasks=None, arithmetic_op_fields_task=None):
        if tasks is None:
            self._tasks = []
        else:
            self._tasks = tasks
        self._arithmetic_op_fields_task = arithmetic_op_fields_task

    def __constructor__(self, *args, **kwargs):
        return type(self)(*args, **kwargs)

    def copy(self):
        return self.__constructor__(
            tasks=copy.deepcopy(self._tasks),
            arithmetic_op_fields_task=copy.deepcopy(self._arithmetic_op_fields_task),
        )

    def head(self, index, n):
        # Add a task that is an ascending sort with size=n
        task = HeadTask(index, n)
        self._tasks.append(task)

    def tail(self, index, n):
        # Add a task that is descending sort with size=n
        task = TailTask(index, n)
        self._tasks.append(task)

    def sample(self, index, n, random_state):
        task = SampleTask(index, n, random_state)
        self._tasks.append(task)

    def arithmetic_op_fields(self, display_name, arithmetic_series):
        if self._arithmetic_op_fields_task is None:
            self._arithmetic_op_fields_task = ArithmeticOpFieldsTask(
                display_name, arithmetic_series
            )
        else:
            self._arithmetic_op_fields_task.update(display_name, arithmetic_series)

    def get_arithmetic_op_fields(self) -> Optional[ArithmeticOpFieldsTask]:
        # get an ArithmeticOpFieldsTask if it exists
        return self._arithmetic_op_fields_task

    def __repr__(self):
        return repr(self._tasks)

    def count(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        # Elasticsearch _count is very efficient and so used to return results here. This means that
        # data frames that have restricted size or sort params will not return valid results
        # (_count doesn't support size).
        # Longer term we may fall back to pandas, but this may result in loading all index into memory.
        if self._size(query_params, post_processing) is not None:
            raise NotImplementedError(
                f"Requesting count with additional query and processing parameters "
                f"not supported {query_params} {post_processing}"
            )

        # Only return requested field_names
        fields = query_compiler.get_field_names(include_scripted_fields=False)

        counts = {}
        for field in fields:
            body = Query(query_params.query)
            body.exists(field, must=True)

            field_exists_count = query_compiler._client.count(
                index=query_compiler._index_pattern, body=body.to_count_body()
            )["count"]
            counts[field] = field_exists_count

        return build_pd_series(data=counts, index=fields)

    def _metric_agg_series(
        self,
        query_compiler: "QueryCompiler",
        agg: List,
        numeric_only: Optional[bool] = None,
    ) -> pd.Series:
        results = self._metric_aggs(query_compiler, agg, numeric_only=numeric_only)
        if numeric_only:
            return build_pd_series(results, index=results.keys(), dtype=np.float64)
        else:
            # If all results are float convert into float64
            if all(isinstance(i, float) for i in results.values()):
                dtype = np.float64
            # If all results are int convert into int64
            elif all(isinstance(i, int) for i in results.values()):
                dtype = np.int64
            # If single result is present consider that datatype instead of object
            elif len(results) <= 1:
                dtype = None
            else:
                dtype = "object"
            return build_pd_series(results, index=results.keys(), dtype=dtype)

    def value_counts(self, query_compiler: "QueryCompiler", es_size: int) -> pd.Series:
        return self._terms_aggs(query_compiler, "terms", es_size)

    def hist(self, query_compiler, bins):
        return self._hist_aggs(query_compiler, bins)

    def aggs(self, query_compiler, pd_aggs, numeric_only=None) -> pd.DataFrame:
        results = self._metric_aggs(
            query_compiler, pd_aggs, numeric_only=numeric_only, is_dataframe_agg=True
        )
        return pd.DataFrame(
            results, index=pd_aggs, dtype=(np.float64 if numeric_only else None)
        )

    def mode(
        self,
        query_compiler: "QueryCompiler",
        pd_aggs: List[str],
        is_dataframe: bool,
        es_size: int,
        numeric_only: bool = False,
        dropna: bool = True,
    ) -> Union[pd.DataFrame, pd.Series]:

        results = self._metric_aggs(
            query_compiler,
            pd_aggs=pd_aggs,
            numeric_only=numeric_only,
            dropna=dropna,
            es_mode_size=es_size,
        )

        pd_dict: Dict[str, Any] = {}
        row_diff: Optional[int] = None

        if is_dataframe:
            # If multiple values of mode is returned for a particular column
            # find the maximum length and use that to fill dataframe with NaN/NaT
            rows_len = max([len(value) for value in results.values()])
            for key, values in results.items():
                row_diff = rows_len - len(values)
                # Convert np.ndarray to list
                values = list(values)
                if row_diff:
                    if isinstance(values[0], pd.Timestamp):
                        values.extend([pd.NaT] * row_diff)
                    else:
                        values.extend([np.NaN] * row_diff)
                pd_dict[key] = values

            return pd.DataFrame(pd_dict)
        else:
            return pd.DataFrame(results.values()).iloc[0].rename()

    def _metric_aggs(
        self,
        query_compiler: "QueryCompiler",
        pd_aggs: List[str],
        numeric_only: Optional[bool] = None,
        is_dataframe_agg: bool = False,
        es_mode_size: Optional[int] = None,
        dropna: bool = True,
    ) -> Dict[str, Any]:
        """
        Used to calculate metric aggregations
        https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics.html

        Parameters
        ----------
        query_compiler:
            Query Compiler object
        pd_aggs:
            aggregations that are to be performed on dataframe or series
        numeric_only:
            return either all numeric values or NaN/NaT
        is_dataframe_agg:
            know if this method is called from single-agg or aggreagation method
        es_mode_size:
            number of rows to return when multiple mode values are present.
        dropna:
            drop NaN/NaT for a dataframe

        Returns
        -------
            A dictionary which contains all aggregations calculated.
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        fields = query_compiler._mappings.all_source_fields()
        if numeric_only:
            # Consider if field is Int/Float/Bool
            fields = [field for field in fields if (field.is_numeric or field.is_bool)]

        body = Query(query_params.query)

        # Convert pandas aggs to ES equivalent
        es_aggs = self._map_pd_aggs_to_es_aggs(pd_aggs)

        for field in fields:
            for es_agg in es_aggs:
                # NaN/NaT fields are ignored
                if not field.is_es_agg_compatible(es_agg):
                    continue

                # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call
                if isinstance(es_agg, tuple):
                    body.metric_aggs(
                        f"{es_agg[0]}_{field.es_field_name}",
                        es_agg[0],
                        field.aggregatable_es_field_name,
                    )
                elif es_agg == "mode":
                    # TODO for dropna=False, Check If field is timestamp or boolean or numeric,
                    # then use missing parameter for terms aggregation.
                    body.terms_aggs(
                        f"{es_agg}_{field.es_field_name}",
                        "terms",
                        field.aggregatable_es_field_name,
                        es_mode_size,
                    )
                else:
                    body.metric_aggs(
                        f"{es_agg}_{field.es_field_name}",
                        es_agg,
                        field.aggregatable_es_field_name,
                    )

        response = query_compiler._client.search(
            index=query_compiler._index_pattern, size=0, body=body.to_search_body()
        )

        """
        Results are like (for 'sum', 'min')

             AvgTicketPrice  DistanceKilometers  DistanceMiles  FlightDelayMin
        sum    8.204365e+06        9.261629e+07   5.754909e+07          618150
        min    1.000205e+02        0.000000e+00   0.000000e+00               0
        """

        return self._unpack_metric_aggs(
            fields=fields,
            es_aggs=es_aggs,
            pd_aggs=pd_aggs,
            response=response,
            numeric_only=numeric_only,
            is_dataframe_agg=is_dataframe_agg,
        )

    def _terms_aggs(
        self, query_compiler: "QueryCompiler", func: str, es_size: int
    ) -> pd.Series:
        """
        Parameters
        ----------
        es_size: int, default None
            Parameter used by Series.value_counts()

        Returns
        -------
        pandas.Series
            Series containing results of `func` applied to the field_name(s)
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        # Get just aggregatable field_names
        aggregatable_field_names = query_compiler._mappings.aggregatable_field_names()

        body = Query(query_params.query)

        for field in aggregatable_field_names.keys():
            body.terms_aggs(field, func, field, es_size=es_size)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern, size=0, body=body.to_search_body()
        )

        results = {}

        for key in aggregatable_field_names.keys():
            # key is aggregatable field, value is label
            # e.g. key=category.keyword, value=category
            for bucket in response["aggregations"][key]["buckets"]:
                results[bucket["key"]] = bucket["doc_count"]

        try:
            # get first value in dict (key is .keyword)
            name = list(aggregatable_field_names.values())[0]
        except IndexError:
            name = None

        return build_pd_series(results, name=name)

    def _hist_aggs(self, query_compiler, num_bins):
        # Get histogram bins and weights for numeric field_names
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        numeric_source_fields = query_compiler._mappings.numeric_source_fields()

        body = Query(query_params.query)

        results = self._metric_aggs(query_compiler, ["min", "max"], numeric_only=True)
        min_aggs = {}
        max_aggs = {}
        for field, (min_agg, max_agg) in results.items():
            min_aggs[field] = min_agg
            max_aggs[field] = max_agg

        for field in numeric_source_fields:
            body.hist_aggs(field, field, min_aggs[field], max_aggs[field], num_bins)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern, size=0, body=body.to_search_body()
        )
        # results are like
        # "aggregations" : {
        #     "DistanceKilometers" : {
        #       "buckets" : [
        #         {
        #           "key" : 0.0,
        #           "doc_count" : 2956
        #         },
        #         {
        #           "key" : 1988.1482421875,
        #           "doc_count" : 768
        #         },
        #         ...

        bins = {}
        weights = {}

        # There is one more bin that weights
        # len(bins) = len(weights) + 1

        # bins = [  0.  36.  72. 108. 144. 180. 216. 252. 288. 324. 360.]
        # len(bins) == 11
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   394.]
        # len(weights) == 10

        # ES returns
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   252.,    142.]
        # So sum last 2 buckets
        for field in numeric_source_fields:

            # in case of series let plotting.ed_hist_series thrown an exception
            if not response.get("aggregations"):
                continue

            # in case of dataframe, throw warning that field is excluded
            if not response["aggregations"].get(field):
                warnings.warn(
                    f"{field} has no meaningful histogram interval and will be excluded. "
                    f"All values 0.",
                    UserWarning,
                )
                continue

            buckets = response["aggregations"][field]["buckets"]

            bins[field] = []
            weights[field] = []

            for bucket in buckets:
                bins[field].append(bucket["key"])

                if bucket == buckets[-1]:
                    weights[field][-1] += bucket["doc_count"]
                else:
                    weights[field].append(bucket["doc_count"])

        df_bins = pd.DataFrame(data=bins)
        df_weights = pd.DataFrame(data=weights)
        return df_bins, df_weights

    def _unpack_metric_aggs(
        self,
        fields: List["Field"],
        es_aggs: Union[List[str], List[Tuple[str, str]]],
        pd_aggs: List[str],
        response: Dict[str, Any],
        numeric_only: Optional[bool],
        is_dataframe_agg: bool = False,
    ):
        """
        This method unpacks metric aggregations JSON response.
        This can be called either directly on an aggs query
        or on an individual bucket within a composite aggregation.

        Parameters
        ----------
        fields:
            a list of Field Mappings
        es_aggs:
            Eland Equivalent of aggs
        pd_aggs:
            a list of aggs
        response:
            a dict containing response from Elastic Search
        numeric_only:
            return either numeric values or NaN/NaT

        Returns
        -------
            a dictionary on which agg caluculations are done.
        """
        results: Dict[str, Any] = {}

        for field in fields:
            values = []
            for es_agg, pd_agg in zip(es_aggs, pd_aggs):
                # is_dataframe_agg is used to differentiate agg() and an aggregation called through .mean()
                # If the field and agg aren't compatible we add a NaN/NaT for agg
                # If the field and agg aren't compatible we don't add NaN/NaT for an aggregation called through .mean()
                if not field.is_es_agg_compatible(es_agg):
                    if is_dataframe_agg and not numeric_only:
                        values.append(field.nan_value)
                    elif not is_dataframe_agg and numeric_only is False:
                        values.append(field.nan_value)
                    # Explicit condition for mad to add NaN because it doesn't support bool
                    elif is_dataframe_agg and numeric_only:
                        if pd_agg == "mad":
                            values.append(field.nan_value)
                    continue

                if isinstance(es_agg, tuple):
                    agg_value = response["aggregations"][
                        f"{es_agg[0]}_{field.es_field_name}"
                    ]

                    # Pull multiple values from 'percentiles' result.
                    if es_agg[0] == "percentiles":
                        agg_value = agg_value["values"]

                    agg_value = agg_value[es_agg[1]]

                    # Need to convert 'Population' stddev and variance
                    # from Elasticsearch into 'Sample' stddev and variance
                    # which is what pandas uses.
                    if es_agg[1] in ("std_deviation", "variance"):
                        # Neither transformation works with count <=1
                        count = response["aggregations"][
                            f"{es_agg[0]}_{field.es_field_name}"
                        ]["count"]

                        # All of the below calculations result in NaN if count<=1
                        if count <= 1:
                            agg_value = np.NaN

                        elif es_agg[1] == "std_deviation":
                            agg_value *= count / (count - 1.0)

                        else:  # es_agg[1] == "variance"
                            # sample_std=\sqrt{\frac{1}{N-1}\sum_{i=1}^N(x_i-\bar{x})^2}
                            # population_std=\sqrt{\frac{1}{N}\sum_{i=1}^N(x_i-\bar{x})^2}
                            # sample_std=\sqrt{\frac{N}{N-1}population_std}
                            agg_value = np.sqrt(
                                (count / (count - 1.0)) * agg_value * agg_value
                            )
                elif es_agg == "mode":
                    # For terms aggregation buckets are returned
                    # agg_value will be of type list
                    agg_value = response["aggregations"][
                        f"{es_agg}_{field.es_field_name}"
                    ]["buckets"]
                else:
                    agg_value = response["aggregations"][
                        f"{es_agg}_{field.es_field_name}"
                    ]["value"]

                if isinstance(agg_value, list):
                    # include top-terms in the result.
                    if not agg_value:
                        # If the all the documents for a field are empty
                        agg_value = [field.nan_value]
                    else:
                        max_doc_count = agg_value[0]["doc_count"]
                        # We need only keys which are equal to max_doc_count
                        # lesser values are ignored
                        agg_value = [
                            item["key"]
                            for item in agg_value
                            if item["doc_count"] == max_doc_count
                        ]

                        # Maintain datatype by default because pandas does the same
                        # text are returned as-is
                        if field.is_bool or field.is_numeric:
                            agg_value = [
                                field.np_dtype.type(value) for value in agg_value
                            ]

                # Null usually means there were no results.
                if not isinstance(agg_value, list) and (
                    agg_value is None or np.isnan(agg_value)
                ):
                    if is_dataframe_agg and not numeric_only:
                        agg_value = np.NaN
                    elif not is_dataframe_agg and numeric_only is False:
                        agg_value = np.NaN

                # Cardinality is always either NaN or integer.
                elif pd_agg in ("nunique", "count"):
                    agg_value = int(agg_value)

                # If this is a non-null timestamp field convert to a pd.Timestamp()
                elif field.is_timestamp:
                    if isinstance(agg_value, list):
                        # convert to timestamp results for mode
                        agg_value = [
                            elasticsearch_date_to_pandas_date(
                                value, field.es_date_format
                            )
                            for value in agg_value
                        ]
                    else:
                        agg_value = elasticsearch_date_to_pandas_date(
                            agg_value, field.es_date_format
                        )
                # If numeric_only is False | None then maintain column datatype
                elif not numeric_only:
                    # we're only converting to bool for lossless aggs like min, max, and median.
                    if pd_agg in {"max", "min", "median", "sum", "mode"}:
                        # 'sum' isn't representable with bool, use int64
                        if pd_agg == "sum" and field.is_bool:
                            agg_value = np.int64(agg_value)
                        else:
                            agg_value = field.np_dtype.type(agg_value)

                values.append(agg_value)

            # If numeric_only is True and We only have a NaN type field then we check for empty.
            if values:
                results[field.column] = values if len(values) > 1 else values[0]

        return results

    def aggs_groupby(
        self,
        query_compiler: "QueryCompiler",
        by: List[str],
        pd_aggs: List[str],
        dropna: bool = True,
        is_dataframe_agg: bool = False,
        numeric_only: Optional[bool] = True,
    ) -> pd.DataFrame:
        """
        This method is used to construct groupby aggregation dataframe

        Parameters
        ----------
        query_compiler:
            A Query compiler
        by:
            a list of columns on which groupby operations have to be performed
        pd_aggs:
            a list of aggregations to be performed
        dropna:
            Drop None values if True.
            TODO Not yet implemented
        is_dataframe_agg:
            Know if groupby with aggregation or single agg is called.
        numeric_only:
            return either numeric values or NaN/NaT

        Returns
        -------
            A dataframe which consists groupby data
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        by_fields, agg_fields = query_compiler._mappings.groupby_source_fields(by=by)

        # Used defaultdict to avoid initialization of columns with lists
        results: Dict[str, List[Any]] = defaultdict(list)

        if numeric_only:
            agg_fields = [
                field for field in agg_fields if (field.is_numeric or field.is_bool)
            ]

        body = Query(query_params.query)

        # To return for creating multi-index on columns
        headers = [agg_field.column for agg_field in agg_fields]

        # Convert pandas aggs to ES equivalent
        es_aggs = self._map_pd_aggs_to_es_aggs(pd_aggs)

        # Construct Query
        for by_field in by_fields:
            if by_field.aggregatable_es_field_name is None:
                raise ValueError(
                    f"Cannot use {by_field.column!r} with groupby() because "
                    f"it has no aggregatable fields in Elasticsearch"
                )
            # groupby fields will be term aggregations
            body.composite_agg_bucket_terms(
                name=f"groupby_{by_field.column}",
                field=by_field.aggregatable_es_field_name,
            )

        for agg_field in agg_fields:
            for es_agg in es_aggs:
                # Skip if the field isn't compatible or if the agg is
                # 'value_count' as this value is pulled from bucket.doc_count.
                if not agg_field.is_es_agg_compatible(es_agg):
                    continue

                # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call
                if isinstance(es_agg, tuple):
                    body.metric_aggs(
                        f"{es_agg[0]}_{agg_field.es_field_name}",
                        es_agg[0],
                        agg_field.aggregatable_es_field_name,
                    )
                else:
                    body.metric_aggs(
                        f"{es_agg}_{agg_field.es_field_name}",
                        es_agg,
                        agg_field.aggregatable_es_field_name,
                    )

        # Composite aggregation
        body.composite_agg_start(
            size=DEFAULT_PAGINATION_SIZE, name="groupby_buckets", dropna=dropna
        )

        for buckets in self.bucket_generator(query_compiler, body):
            # We recieve response row-wise
            for bucket in buckets:
                # groupby columns are added to result same way they are returned
                for by_field in by_fields:
                    bucket_key = bucket["key"][f"groupby_{by_field.column}"]

                    # Datetimes always come back as integers, convert to pd.Timestamp()
                    if by_field.is_timestamp and isinstance(bucket_key, int):
                        bucket_key = pd.to_datetime(bucket_key, unit="ms")

                    results[by_field.column].append(bucket_key)

                agg_calculation = self._unpack_metric_aggs(
                    fields=agg_fields,
                    es_aggs=es_aggs,
                    pd_aggs=pd_aggs,
                    response={"aggregations": bucket},
                    numeric_only=numeric_only,
                    # We set 'True' here because we want the value
                    # unpacking to always be in 'dataframe' mode.
                    is_dataframe_agg=True,
                )

                # Process the calculated agg values to response
                for key, value in agg_calculation.items():
                    if not isinstance(value, list):
                        results[key].append(value)
                        continue
                    for pd_agg, val in zip(pd_aggs, value):
                        results[f"{key}_{pd_agg}"].append(val)

        agg_df = pd.DataFrame(results).set_index(by)

        if is_dataframe_agg:
            # Convert header columns to MultiIndex
            agg_df.columns = pd.MultiIndex.from_product([headers, pd_aggs])
        else:
            # Convert header columns to Index
            agg_df.columns = pd.Index(headers)

        return agg_df

    @staticmethod
    def bucket_generator(
        query_compiler: "QueryCompiler", body: "Query"
    ) -> Generator[List[str], None, List[str]]:
        """
            This can be used for all groupby operations.
        e.g.
        "aggregations": {
            "groupby_buckets": {
                "after_key": {"total_quantity": 8},
                "buckets": [
                    {
                        "key": {"total_quantity": 1},
                        "doc_count": 87,
                        "taxful_total_price_avg": {"value": 48.035978536496216},
                    }
                ],
            }
        }
        Returns
        -------
        A generator which initially yields the bucket
        If after_key is found, use it to fetch the next set of buckets.

        """
        while True:
            res = query_compiler._client.search(
                index=query_compiler._index_pattern,
                size=0,
                body=body.to_search_body(),
            )

            # Pagination Logic
            composite_buckets = res["aggregations"]["groupby_buckets"]
            if "after_key" in composite_buckets:

                # yield the bucket which contains the result
                yield composite_buckets["buckets"]

                body.composite_agg_after_key(
                    name="groupby_buckets",
                    after_key=composite_buckets["after_key"],
                )
            else:
                return composite_buckets["buckets"]

    @staticmethod
    def _map_pd_aggs_to_es_aggs(pd_aggs):
        """
        Args:
            pd_aggs - list of pandas aggs (e.g. ['mad', 'min', 'std'] etc.)

        Returns:
            ed_aggs - list of corresponding es_aggs (e.g. ['median_absolute_deviation', 'min', 'std'] etc.)

        Pandas supports a lot of options here, and these options generally work on text and numerics in pandas.
        Elasticsearch has metric aggs and terms aggs so will have different behaviour.

        Pandas aggs that return field_names (as opposed to transformed rows):

        all
        any
        count
        mad
        max
        mean
        median
        min
        mode
        quantile
        rank
        sem
        skew
        sum
        std
        var
        nunique
        """
        # pd aggs that will be mapped to es aggs
        # that can use 'extended_stats'.
        extended_stats_pd_aggs = {"mean", "min", "max", "sum", "var", "std"}
        extended_stats_es_aggs = {"avg", "min", "max", "sum"}
        extended_stats_calls = 0

        es_aggs = []
        for pd_agg in pd_aggs:
            if pd_agg in extended_stats_pd_aggs:
                extended_stats_calls += 1

            # Aggs that are 'extended_stats' compatible
            if pd_agg == "count":
                es_aggs.append("value_count")
            elif pd_agg == "max":
                es_aggs.append("max")
            elif pd_agg == "min":
                es_aggs.append("min")
            elif pd_agg == "mean":
                es_aggs.append("avg")
            elif pd_agg == "sum":
                es_aggs.append("sum")
            elif pd_agg == "std":
                es_aggs.append(("extended_stats", "std_deviation"))
            elif pd_agg == "var":
                es_aggs.append(("extended_stats", "variance"))

            # Aggs that aren't 'extended_stats' compatible
            elif pd_agg == "nunique":
                es_aggs.append("cardinality")
            elif pd_agg == "mad":
                es_aggs.append("median_absolute_deviation")
            elif pd_agg == "median":
                es_aggs.append(("percentiles", "50.0"))

            elif pd_agg == "mode":
                if len(pd_aggs) != 1:
                    raise NotImplementedError(
                        "Currently mode is not supported in df.agg(...). Try df.mode()"
                    )
                else:
                    es_aggs.append("mode")

            # Not implemented
            elif pd_agg == "quantile":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "rank":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "sem":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            else:
                raise NotImplementedError(pd_agg, " not currently implemented")

        # If two aggs compatible with 'extended_stats' is called we can
        # piggy-back on that single aggregation.
        if extended_stats_calls >= 2:
            es_aggs = [
                ("extended_stats", es_agg)
                if es_agg in extended_stats_es_aggs
                else es_agg
                for es_agg in es_aggs
            ]

        return es_aggs

    def filter(
        self,
        query_compiler: "QueryCompiler",
        items: Optional[Sequence[str]] = None,
        like: Optional[str] = None,
        regex: Optional[str] = None,
    ) -> None:
        # This function is only called for axis='index',
        # DataFrame.filter(..., axis="columns") calls .drop()
        if items is not None:
            self.filter_index_values(
                query_compiler, field=query_compiler.index.es_index_field, items=items
            )
            return
        elif like is not None:
            arg_name = "like"
        else:
            assert regex is not None
            arg_name = "regex"

        raise NotImplementedError(
            f".filter({arg_name}='...', axis='index') is currently not supported due "
            f"to substring and regex operations not being available for Elasticsearch document IDs."
        )

    def describe(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        numeric_source_fields = query_compiler._mappings.numeric_source_fields()

        # for each field we compute:
        # count, mean, std, min, 25%, 50%, 75%, max
        body = Query(query_params.query)

        for field in numeric_source_fields:
            body.metric_aggs("extended_stats_" + field, "extended_stats", field)
            body.metric_aggs("percentiles_" + field, "percentiles", field)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern, size=0, body=body.to_search_body()
        )

        results = {}

        for field in numeric_source_fields:
            values = list()
            values.append(response["aggregations"]["extended_stats_" + field]["count"])
            values.append(response["aggregations"]["extended_stats_" + field]["avg"])
            values.append(
                response["aggregations"]["extended_stats_" + field]["std_deviation"]
            )
            values.append(response["aggregations"]["extended_stats_" + field]["min"])
            values.append(
                response["aggregations"]["percentiles_" + field]["values"]["25.0"]
            )
            values.append(
                response["aggregations"]["percentiles_" + field]["values"]["50.0"]
            )
            values.append(
                response["aggregations"]["percentiles_" + field]["values"]["75.0"]
            )
            values.append(response["aggregations"]["extended_stats_" + field]["max"])

            # if not None
            if values.count(None) < len(values):
                results[field] = values

        df = pd.DataFrame(
            data=results,
            index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
        )

        return df

    def to_pandas(self, query_compiler, show_progress=False):
        class PandasDataFrameCollector:
            def __init__(self, show_progress):
                self._df = None
                self._show_progress = show_progress

            def collect(self, df):
                # This collector does not batch data on output. Therefore, batch_size is fixed to None and this method
                # is only called once.
                if self._df is not None:
                    raise RuntimeError(
                        "Logic error in execution, this method must only be called once for this"
                        "collector - batch_size == None"
                    )
                self._df = df

            @staticmethod
            def batch_size():
                # Do not change (see notes on collect)
                return None

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasDataFrameCollector(show_progress)

        self._es_results(query_compiler, collector)

        return collector._df

    def to_csv(self, query_compiler, show_progress=False, **kwargs):
        class PandasToCSVCollector:
            def __init__(self, show_progress, **args):
                self._args = args
                self._show_progress = show_progress
                self._ret = None
                self._first_time = True

            def collect(self, df):
                # If this is the first time we collect results, then write header, otherwise don't write header
                # and append results
                if self._first_time:
                    self._first_time = False
                    df.to_csv(**self._args)
                else:
                    # Don't write header, and change mode to append
                    self._args["header"] = False
                    self._args["mode"] = "a"
                    df.to_csv(**self._args)

            @staticmethod
            def batch_size():
                # By default read n docs and then dump to csv
                batch_size = DEFAULT_CSV_BATCH_OUTPUT_SIZE
                return batch_size

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasToCSVCollector(show_progress, **kwargs)

        self._es_results(query_compiler, collector)

        return collector._ret

    def _es_results(self, query_compiler, collector):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size, sort_params = Operations._query_params_to_size_and_sort(query_params)

        script_fields = query_params.script_fields
        query = Query(query_params.query)

        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        # Only return requested field_names
        _source = query_compiler.get_field_names(include_scripted_fields=False)
        if _source:
            # For query_compiler._client.search we could add _source
            # as a parameter, or add this value in body.
            #
            # If _source is a parameter it is encoded into to the url.
            #
            # If _source is a large number of fields (1000+) then this can result in an
            # extremely long url and a `too_long_frame_exception`. Therefore, add
            # _source to the body rather than as a _source parameter
            body["_source"] = _source
        else:
            body["_source"] = False

        es_results = None

        # If size=None use scan not search - then post sort results when in df
        # If size>10000 use scan
        is_scan = False
        if size is not None and size <= DEFAULT_ES_MAX_RESULT_WINDOW:
            if size > 0:
                es_results = query_compiler._client.search(
                    index=query_compiler._index_pattern,
                    size=size,
                    sort=sort_params,
                    body=body,
                )
        else:
            is_scan = True
            es_results = scan(
                client=query_compiler._client,
                index=query_compiler._index_pattern,
                query=body,
            )
            # create post sort
            if sort_params is not None:
                post_processing.append(SortFieldAction(sort_params))

        if is_scan:
            while True:
                partial_result, df = query_compiler._es_results_to_pandas(
                    es_results, collector.batch_size(), collector.show_progress
                )
                df = self._apply_df_post_processing(df, post_processing)
                collector.collect(df)
                if not partial_result:
                    break
        else:
            partial_result, df = query_compiler._es_results_to_pandas(es_results)
            df = self._apply_df_post_processing(df, post_processing)
            collector.collect(df)

    def index_count(self, query_compiler, field):
        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            # TODO - this is not necessarily valid as the field may not exist in ALL these docs
            return size

        body = Query(query_params.query)
        body.exists(field, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern, body=body.to_count_body()
        )["count"]

    def _validate_index_operation(
        self, query_compiler: "QueryCompiler", items: Sequence[str]
    ) -> RESOLVED_TASK_TYPE:
        if not isinstance(items, list):
            raise TypeError(f"list item required - not {type(items)}")

        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}"
            )

        return query_params, post_processing

    def index_matches_count(self, query_compiler, field, items):
        query_params, post_processing = self._validate_index_operation(
            query_compiler, items
        )

        body = Query(query_params.query)

        if field == Index.ID_INDEX_FIELD:
            body.ids(items, must=True)
        else:
            body.terms(field, items, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern, body=body.to_count_body()
        )["count"]

    def drop_index_values(
        self, query_compiler: "QueryCompiler", field: str, items: Sequence[str]
    ) -> None:
        self._validate_index_operation(query_compiler, items)

        # Putting boolean queries together
        # i = 10
        # not i = 20
        # _id in [1,2,3]
        # _id not in [1,2,3]
        # a in ['a','b','c']
        # b not in ['a','b','c']
        # For now use term queries
        if field == Index.ID_INDEX_FIELD:
            task = QueryIdsTask(False, items)
        else:
            task = QueryTermsTask(False, field, items)
        self._tasks.append(task)

    def filter_index_values(
        self, query_compiler: "QueryCompiler", field: str, items: Sequence[str]
    ) -> None:
        # Basically .drop_index_values() except with must=True on tasks.
        self._validate_index_operation(query_compiler, items)

        if field == Index.ID_INDEX_FIELD:
            task = QueryIdsTask(True, items, sort_index_by_ids=True)
        else:
            task = QueryTermsTask(True, field, items)
        self._tasks.append(task)

    @staticmethod
    def _query_params_to_size_and_sort(
        query_params: QueryParams,
    ) -> Tuple[Optional[int], Optional[str]]:
        sort_params = None
        if query_params.sort_field and query_params.sort_order:
            sort_params = (
                f"{query_params.sort_field}:"
                f"{SortOrder.to_string(query_params.sort_order)}"
            )
        size = query_params.size
        return size, sort_params

    @staticmethod
    def _count_post_processing(
        post_processing: List["PostProcessingAction"],
    ) -> Optional[int]:
        size = None
        for action in post_processing:
            if isinstance(action, SizeTask):
                if size is None or action.size() < size:
                    size = action.size()
        return size

    @staticmethod
    def _apply_df_post_processing(
        df: "pd.DataFrame", post_processing: List["PostProcessingAction"]
    ) -> pd.DataFrame:
        for action in post_processing:
            df = action.resolve_action(df)

        return df

    def _resolve_tasks(self, query_compiler: "QueryCompiler") -> RESOLVED_TASK_TYPE:
        # We now try and combine all tasks into an Elasticsearch query
        # Some operations can be simply combined into a single query
        # other operations require pre-queries and then combinations
        # other operations require in-core post-processing of results
        query_params = QueryParams()
        post_processing = []

        for task in self._tasks:
            query_params, post_processing = task.resolve_task(
                query_params, post_processing, query_compiler
            )

        if self._arithmetic_op_fields_task is not None:
            (
                query_params,
                post_processing,
            ) = self._arithmetic_op_fields_task.resolve_task(
                query_params, post_processing, query_compiler
            )

        return query_params, post_processing

    def _size(
        self, query_params: "QueryParams", post_processing: List["PostProcessingAction"]
    ) -> Optional[int]:
        # Shrink wrap code around checking if size parameter is set
        size = query_params.size

        pp_size = self._count_post_processing(post_processing)
        if pp_size is not None:
            if size is not None:
                size = min(size, pp_size)
            else:
                size = pp_size

        # This can return None
        return size

    def es_info(self, query_compiler, buf):
        buf.write("Operations:\n")
        buf.write(f" tasks: {self._tasks}\n")

        query_params, post_processing = self._resolve_tasks(query_compiler)
        size, sort_params = Operations._query_params_to_size_and_sort(query_params)
        _source = query_compiler._mappings.get_field_names()

        script_fields = query_params.script_fields
        query = Query(query_params.query)
        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        buf.write(f" size: {size}\n")
        buf.write(f" sort_params: {sort_params}\n")
        buf.write(f" _source: {_source}\n")
        buf.write(f" body: {body}\n")
        buf.write(f" post_processing: {post_processing}\n")

    def update_query(self, boolean_filter):
        task = BooleanFilterTask(boolean_filter)
        self._tasks.append(task)
Example #3
0
class Operations:
    """
    A collector of the queries and selectors we apply to queries to return the appropriate results.

    For example,
        - a list of the field_names in the DataFrame (a subset of field_names in the index)
        - a size limit on the results (e.g. for head(n=5))
        - a query to filter the results (e.g. df.A > 10)

    This is maintained as a 'task graph' (inspired by dask)
    (see https://docs.dask.org/en/latest/spec.html)
    """
    def __init__(self, tasks=None, arithmetic_op_fields_task=None):
        if tasks is None:
            self._tasks = []
        else:
            self._tasks = tasks
        self._arithmetic_op_fields_task = arithmetic_op_fields_task

    def __constructor__(self, *args, **kwargs):
        return type(self)(*args, **kwargs)

    def copy(self):
        return self.__constructor__(
            tasks=copy.deepcopy(self._tasks),
            arithmetic_op_fields_task=copy.deepcopy(
                self._arithmetic_op_fields_task),
        )

    def head(self, index, n):
        # Add a task that is an ascending sort with size=n
        task = HeadTask(index, n)
        self._tasks.append(task)

    def tail(self, index, n):
        # Add a task that is descending sort with size=n
        task = TailTask(index, n)
        self._tasks.append(task)

    def sample(self, index, n, random_state):
        task = SampleTask(index, n, random_state)
        self._tasks.append(task)

    def arithmetic_op_fields(self, display_name, arithmetic_series):
        if self._arithmetic_op_fields_task is None:
            self._arithmetic_op_fields_task = ArithmeticOpFieldsTask(
                display_name, arithmetic_series)
        else:
            self._arithmetic_op_fields_task.update(display_name,
                                                   arithmetic_series)

    def get_arithmetic_op_fields(self) -> Optional[ArithmeticOpFieldsTask]:
        # get an ArithmeticOpFieldsTask if it exists
        return self._arithmetic_op_fields_task

    def __repr__(self):
        return repr(self._tasks)

    def count(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        # Elasticsearch _count is very efficient and so used to return results here. This means that
        # data frames that have restricted size or sort params will not return valid results
        # (_count doesn't support size).
        # Longer term we may fall back to pandas, but this may result in loading all index into memory.
        if self._size(query_params, post_processing) is not None:
            raise NotImplementedError(
                f"Requesting count with additional query and processing parameters "
                f"not supported {query_params} {post_processing}")

        # Only return requested field_names
        fields = query_compiler.get_field_names(include_scripted_fields=False)

        counts = {}
        for field in fields:
            body = Query(query_params.query)
            body.exists(field, must=True)

            field_exists_count = query_compiler._client.count(
                index=query_compiler._index_pattern,
                body=body.to_count_body())["count"]
            counts[field] = field_exists_count

        return build_pd_series(data=counts, index=fields)

    def mean(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["mean"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def var(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["var"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def std(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["std"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def median(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["median"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def sum(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["sum"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def max(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["max"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def min(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["min"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def nunique(self, query_compiler):
        results = self._metric_aggs(query_compiler, ["nunique"],
                                    numeric_only=False)
        return build_pd_series(results, index=results.keys())

    def mad(self, query_compiler, numeric_only=True):
        results = self._metric_aggs(query_compiler, ["mad"],
                                    numeric_only=numeric_only)
        return build_pd_series(results, index=results.keys())

    def value_counts(self, query_compiler, es_size):
        return self._terms_aggs(query_compiler, "terms", es_size)

    def hist(self, query_compiler, bins):
        return self._hist_aggs(query_compiler, bins)

    def _metric_aggs(self,
                     query_compiler: "QueryCompiler",
                     pd_aggs,
                     numeric_only=True):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        results = {}
        fields = query_compiler._mappings.all_source_fields()
        if numeric_only:
            fields = [
                field for field in fields
                if (field.is_numeric or field.is_bool)
            ]

        body = Query(query_params.query)

        # Convert pandas aggs to ES equivalent
        es_aggs = self._map_pd_aggs_to_es_aggs(pd_aggs)

        for field in fields:
            for es_agg in es_aggs:
                if not field.is_es_agg_compatible(es_agg):
                    continue

                # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call
                if isinstance(es_agg, tuple):
                    body.metric_aggs(
                        f"{es_agg[0]}_{field.es_field_name}",
                        es_agg[0],
                        field.aggregatable_es_field_name,
                    )
                else:
                    body.metric_aggs(
                        f"{es_agg}_{field.es_field_name}",
                        es_agg,
                        field.aggregatable_es_field_name,
                    )

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())
        """
        Results are like (for 'sum', 'min')

             AvgTicketPrice  DistanceKilometers  DistanceMiles  FlightDelayMin
        sum    8.204365e+06        9.261629e+07   5.754909e+07          618150
        min    1.000205e+02        0.000000e+00   0.000000e+00               0
        """
        for field in fields:
            values = []
            for es_agg, pd_agg in zip(es_aggs, pd_aggs):

                # If the field and agg aren't compatible we add a NaN
                if not field.is_es_agg_compatible(es_agg):
                    values.append(np.float64(np.NaN))
                    continue

                if isinstance(es_agg, tuple):
                    agg_value = response["aggregations"][
                        f"{es_agg[0]}_{field.es_field_name}"]

                    # Pull multiple values from 'percentiles' result.
                    if es_agg[0] == "percentiles":
                        agg_value = agg_value["values"]

                    agg_value = agg_value[es_agg[1]]

                    # Need to convert 'Population' stddev and variance
                    # from Elasticsearch into 'Sample' stddev and variance
                    # which is what pandas uses.
                    if es_agg[1] in ("std_deviation", "variance"):
                        # Neither transformation works with count <=1
                        count = response["aggregations"][
                            f"{es_agg[0]}_{field.es_field_name}"]["count"]

                        # All of the below calculations result in NaN if count<=1
                        if count <= 1:
                            agg_value = np.float64(np.NaN)

                        elif es_agg[1] == "std_deviation":
                            agg_value *= count / (count - 1.0)

                        else:  # es_agg[1] == "variance"
                            # sample_std=\sqrt{\frac{1}{N-1}\sum_{i=1}^N(x_i-\bar{x})^2}
                            # population_std=\sqrt{\frac{1}{N}\sum_{i=1}^N(x_i-\bar{x})^2}
                            # sample_std=\sqrt{\frac{N}{N-1}population_std}
                            agg_value = np.sqrt((count / (count - 1.0)) *
                                                agg_value * agg_value)
                else:
                    agg_value = response["aggregations"][
                        f"{es_agg}_{field.es_field_name}"]
                    if "value_as_string" in agg_value and field.is_timestamp:
                        agg_value = elasticsearch_date_to_pandas_date(
                            agg_value["value_as_string"], field.es_date_format)
                    else:
                        agg_value = agg_value["value"]

                # These aggregations maintain the column datatype
                if pd_agg in ("max", "min"):
                    agg_value = field.np_dtype.type(agg_value)

                # Null usually means there were no results.
                if agg_value is None:
                    agg_value = np.float64(np.NaN)

                values.append(agg_value)

            results[field.index] = values if len(values) > 1 else values[0]

        return results

    def _terms_aggs(self, query_compiler, func, es_size=None):
        """
        Parameters
        ----------
        es_size: int, default None
            Parameter used by Series.value_counts()

        Returns
        -------
        pandas.Series
            Series containing results of `func` applied to the field_name(s)
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        # Get just aggregatable field_names
        aggregatable_field_names = query_compiler._mappings.aggregatable_field_names(
        )

        body = Query(query_params.query)

        for field in aggregatable_field_names.keys():
            body.terms_aggs(field, func, field, es_size=es_size)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())

        results = {}

        for key in aggregatable_field_names.keys():
            # key is aggregatable field, value is label
            # e.g. key=category.keyword, value=category
            for bucket in response["aggregations"][key]["buckets"]:
                results[bucket["key"]] = bucket["doc_count"]

        try:
            # get first value in dict (key is .keyword)
            name = list(aggregatable_field_names.values())[0]
        except IndexError:
            name = None

        return build_pd_series(results, name=name)

    def _hist_aggs(self, query_compiler, num_bins):
        # Get histogram bins and weights for numeric field_names
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        numeric_source_fields = query_compiler._mappings.numeric_source_fields(
        )

        body = Query(query_params.query)

        results = self._metric_aggs(query_compiler, ["min", "max"],
                                    numeric_only=True)
        min_aggs = {}
        max_aggs = {}
        for field, (min_agg, max_agg) in results.items():
            min_aggs[field] = min_agg
            max_aggs[field] = max_agg

        for field in numeric_source_fields:
            body.hist_aggs(field, field, min_aggs[field], max_aggs[field],
                           num_bins)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())
        # results are like
        # "aggregations" : {
        #     "DistanceKilometers" : {
        #       "buckets" : [
        #         {
        #           "key" : 0.0,
        #           "doc_count" : 2956
        #         },
        #         {
        #           "key" : 1988.1482421875,
        #           "doc_count" : 768
        #         },
        #         ...

        bins = {}
        weights = {}

        # There is one more bin that weights
        # len(bins) = len(weights) + 1

        # bins = [  0.  36.  72. 108. 144. 180. 216. 252. 288. 324. 360.]
        # len(bins) == 11
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   394.]
        # len(weights) == 10

        # ES returns
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   252.,    142.]
        # So sum last 2 buckets
        for field in numeric_source_fields:

            # in case of series let plotting.ed_hist_series thrown an exception
            if not response.get("aggregations"):
                continue

            # in case of dataframe, throw warning that field is excluded
            if not response["aggregations"].get(field):
                warnings.warn(
                    f"{field} has no meaningful histogram interval and will be excluded. "
                    f"All values 0.",
                    UserWarning,
                )
                continue

            buckets = response["aggregations"][field]["buckets"]

            bins[field] = []
            weights[field] = []

            for bucket in buckets:
                bins[field].append(bucket["key"])

                if bucket == buckets[-1]:
                    weights[field][-1] += bucket["doc_count"]
                else:
                    weights[field].append(bucket["doc_count"])

        df_bins = pd.DataFrame(data=bins)
        df_weights = pd.DataFrame(data=weights)
        return df_bins, df_weights

    @staticmethod
    def _map_pd_aggs_to_es_aggs(pd_aggs):
        """
        Args:
            pd_aggs - list of pandas aggs (e.g. ['mad', 'min', 'std'] etc.)

        Returns:
            ed_aggs - list of corresponding es_aggs (e.g. ['median_absolute_deviation', 'min', 'std'] etc.)

        Pandas supports a lot of options here, and these options generally work on text and numerics in pandas.
        Elasticsearch has metric aggs and terms aggs so will have different behaviour.

        Pandas aggs that return field_names (as opposed to transformed rows):

        all
        any
        count
        mad
        max
        mean
        median
        min
        mode
        quantile
        rank
        sem
        skew
        sum
        std
        var
        nunique
        """
        # pd aggs that will be mapped to es aggs
        # that can use 'extended_stats'.
        extended_stats_pd_aggs = {
            "mean", "min", "max", "count", "sum", "var", "std"
        }
        extended_stats_es_aggs = {"avg", "min", "max", "count", "sum"}
        extended_stats_calls = 0

        es_aggs = []
        for pd_agg in pd_aggs:
            if pd_agg in extended_stats_pd_aggs:
                extended_stats_calls += 1

            # Aggs that are 'extended_stats' compatible
            if pd_agg == "count":
                es_aggs.append("count")
            elif pd_agg == "max":
                es_aggs.append("max")
            elif pd_agg == "min":
                es_aggs.append("min")
            elif pd_agg == "mean":
                es_aggs.append("avg")
            elif pd_agg == "sum":
                es_aggs.append("sum")
            elif pd_agg == "std":
                es_aggs.append(("extended_stats", "std_deviation"))
            elif pd_agg == "var":
                es_aggs.append(("extended_stats", "variance"))

            # Aggs that aren't 'extended_stats' compatible
            elif pd_agg == "nunique":
                es_aggs.append("cardinality")
            elif pd_agg == "mad":
                es_aggs.append("median_absolute_deviation")
            elif pd_agg == "median":
                es_aggs.append(("percentiles", "50.0"))

            # Not implemented
            elif pd_agg == "mode":
                # We could do this via top term
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "quantile":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "rank":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "sem":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            else:
                raise NotImplementedError(pd_agg, " not currently implemented")

        # If two aggs compatible with 'extended_stats' is called we can
        # piggy-back on that single aggregation.
        if extended_stats_calls >= 2:
            es_aggs = [("extended_stats",
                        es_agg) if es_agg in extended_stats_es_aggs else es_agg
                       for es_agg in es_aggs]

        return es_aggs

    def aggs(self, query_compiler, pd_aggs):
        results = self._metric_aggs(query_compiler,
                                    pd_aggs,
                                    numeric_only=False)
        return pd.DataFrame(results, index=pd_aggs)

    def filter(self, query_compiler, items=None, like=None, regex=None):
        # This function is only called for axis='index',
        # DataFrame.filter(..., axis="columns") calls .drop()
        if items is not None:
            self.filter_index_values(query_compiler,
                                     field=query_compiler.index.es_index_field,
                                     items=items)
            return
        elif like is not None:
            arg_name = "like"
        else:
            assert regex is not None
            arg_name = "regex"

        raise NotImplementedError(
            f".filter({arg_name}='...', axis='index') is currently not supported due "
            f"to substring and regex operations not being available for Elasticsearch document IDs."
        )

    def describe(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        numeric_source_fields = query_compiler._mappings.numeric_source_fields(
        )

        # for each field we compute:
        # count, mean, std, min, 25%, 50%, 75%, max
        body = Query(query_params.query)

        for field in numeric_source_fields:
            body.metric_aggs("extended_stats_" + field, "extended_stats",
                             field)
            body.metric_aggs("percentiles_" + field, "percentiles", field)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())

        results = {}

        for field in numeric_source_fields:
            values = list()
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["count"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["avg"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["std_deviation"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["min"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["25.0"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["50.0"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["75.0"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["max"])

            # if not None
            if values.count(None) < len(values):
                results[field] = values

        df = pd.DataFrame(
            data=results,
            index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
        )

        return df

    def to_pandas(self, query_compiler, show_progress=False):
        class PandasDataFrameCollector:
            def __init__(self, show_progress):
                self._df = None
                self._show_progress = show_progress

            def collect(self, df):
                # This collector does not batch data on output. Therefore, batch_size is fixed to None and this method
                # is only called once.
                if self._df is not None:
                    raise RuntimeError(
                        "Logic error in execution, this method must only be called once for this"
                        "collector - batch_size == None")
                self._df = df

            @staticmethod
            def batch_size():
                # Do not change (see notes on collect)
                return None

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasDataFrameCollector(show_progress)

        self._es_results(query_compiler, collector)

        return collector._df

    def to_csv(self, query_compiler, show_progress=False, **kwargs):
        class PandasToCSVCollector:
            def __init__(self, show_progress, **args):
                self._args = args
                self._show_progress = show_progress
                self._ret = None
                self._first_time = True

            def collect(self, df):
                # If this is the first time we collect results, then write header, otherwise don't write header
                # and append results
                if self._first_time:
                    self._first_time = False
                    df.to_csv(**self._args)
                else:
                    # Don't write header, and change mode to append
                    self._args["header"] = False
                    self._args["mode"] = "a"
                    df.to_csv(**self._args)

            @staticmethod
            def batch_size():
                # By default read n docs and then dump to csv
                batch_size = DEFAULT_CSV_BATCH_OUTPUT_SIZE
                return batch_size

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasToCSVCollector(show_progress, **kwargs)

        self._es_results(query_compiler, collector)

        return collector._ret

    def _es_results(self, query_compiler, collector):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size, sort_params = Operations._query_params_to_size_and_sort(
            query_params)

        script_fields = query_params.script_fields
        query = Query(query_params.query)

        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        # Only return requested field_names
        _source = query_compiler.get_field_names(include_scripted_fields=False)
        if _source:
            # For query_compiler._client.search we could add _source
            # as a parameter, or add this value in body.
            #
            # If _source is a parameter it is encoded into to the url.
            #
            # If _source is a large number of fields (1000+) then this can result in an
            # extremely long url and a `too_long_frame_exception`. Therefore, add
            # _source to the body rather than as a _source parameter
            body["_source"] = _source
        else:
            body["_source"] = False

        es_results = None

        # If size=None use scan not search - then post sort results when in df
        # If size>10000 use scan
        is_scan = False
        if size is not None and size <= DEFAULT_ES_MAX_RESULT_WINDOW:
            if size > 0:
                try:

                    es_results = query_compiler._client.search(
                        index=query_compiler._index_pattern,
                        size=size,
                        sort=sort_params,
                        body=body,
                    )
                except Exception:
                    # Catch all ES errors and print debug (currently to stdout)
                    error = {
                        "index": query_compiler._index_pattern,
                        "size": size,
                        "sort": sort_params,
                        "body": body,
                    }
                    print("Elasticsearch error:", error)
                    raise
        else:
            is_scan = True
            es_results = scan(
                client=query_compiler._client,
                index=query_compiler._index_pattern,
                query=body,
            )
            # create post sort
            if sort_params is not None:
                post_processing.append(SortFieldAction(sort_params))

        if is_scan:
            while True:
                partial_result, df = query_compiler._es_results_to_pandas(
                    es_results, collector.batch_size(),
                    collector.show_progress)
                df = self._apply_df_post_processing(df, post_processing)
                collector.collect(df)
                if not partial_result:
                    break
        else:
            partial_result, df = query_compiler._es_results_to_pandas(
                es_results)
            df = self._apply_df_post_processing(df, post_processing)
            collector.collect(df)

    def index_count(self, query_compiler, field):
        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            # TODO - this is not necessarily valid as the field may not exist in ALL these docs
            return size

        body = Query(query_params.query)
        body.exists(field, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern,
            body=body.to_count_body())["count"]

    def _validate_index_operation(self, query_compiler, items):
        if not isinstance(items, list):
            raise TypeError(f"list item required - not {type(items)}")

        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        return query_params, post_processing

    def index_matches_count(self, query_compiler, field, items):
        query_params, post_processing = self._validate_index_operation(
            query_compiler, items)

        body = Query(query_params.query)

        if field == Index.ID_INDEX_FIELD:
            body.ids(items, must=True)
        else:
            body.terms(field, items, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern,
            body=body.to_count_body())["count"]

    def drop_index_values(self, query_compiler, field, items):
        self._validate_index_operation(query_compiler, items)

        # Putting boolean queries together
        # i = 10
        # not i = 20
        # _id in [1,2,3]
        # _id not in [1,2,3]
        # a in ['a','b','c']
        # b not in ['a','b','c']
        # For now use term queries
        if field == Index.ID_INDEX_FIELD:
            task = QueryIdsTask(False, items)
        else:
            task = QueryTermsTask(False, field, items)
        self._tasks.append(task)

    def filter_index_values(self, query_compiler, field, items):
        # Basically .drop_index_values() except with must=True on tasks.
        self._validate_index_operation(query_compiler, items)

        if field == Index.ID_INDEX_FIELD:
            task = QueryIdsTask(True, items)
        else:
            task = QueryTermsTask(True, field, items)
        self._tasks.append(task)

    @staticmethod
    def _query_params_to_size_and_sort(
        query_params: QueryParams, ) -> Tuple[Optional[int], Optional[str]]:
        sort_params = None
        if query_params.sort_field and query_params.sort_order:
            sort_params = (f"{query_params.sort_field}:"
                           f"{SortOrder.to_string(query_params.sort_order)}")
        size = query_params.size
        return size, sort_params

    @staticmethod
    def _count_post_processing(post_processing):
        size = None
        for action in post_processing:
            if isinstance(action, SizeTask):
                if size is None or action.size() < size:
                    size = action.size()
        return size

    @staticmethod
    def _apply_df_post_processing(df, post_processing):
        for action in post_processing:
            df = action.resolve_action(df)

        return df

    def _resolve_tasks(self, query_compiler):
        # We now try and combine all tasks into an Elasticsearch query
        # Some operations can be simply combined into a single query
        # other operations require pre-queries and then combinations
        # other operations require in-core post-processing of results
        query_params = QueryParams()
        post_processing = []

        for task in self._tasks:
            query_params, post_processing = task.resolve_task(
                query_params, post_processing, query_compiler)

        if self._arithmetic_op_fields_task is not None:
            (
                query_params,
                post_processing,
            ) = self._arithmetic_op_fields_task.resolve_task(
                query_params, post_processing, query_compiler)

        return query_params, post_processing

    def _size(self, query_params, post_processing):
        # Shrink wrap code around checking if size parameter is set
        size = query_params.size

        pp_size = self._count_post_processing(post_processing)
        if pp_size is not None:
            if size is not None:
                size = min(size, pp_size)
            else:
                size = pp_size

        # This can return None
        return size

    def es_info(self, query_compiler, buf):
        buf.write("Operations:\n")
        buf.write(f" tasks: {self._tasks}\n")

        query_params, post_processing = self._resolve_tasks(query_compiler)
        size, sort_params = Operations._query_params_to_size_and_sort(
            query_params)
        _source = query_compiler._mappings.get_field_names()

        script_fields = query_params.script_fields
        query = Query(query_params.query)
        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        buf.write(f" size: {size}\n")
        buf.write(f" sort_params: {sort_params}\n")
        buf.write(f" _source: {_source}\n")
        buf.write(f" body: {body}\n")
        buf.write(f" post_processing: {post_processing}\n")

    def update_query(self, boolean_filter):
        task = BooleanFilterTask(boolean_filter)
        self._tasks.append(task)
Example #4
0
class Operations:
    """
    A collector of the queries and selectors we apply to queries to return the appropriate results.

    For example,
        - a list of the field_names in the DataFrame (a subset of field_names in the index)
        - a size limit on the results (e.g. for head(n=5))
        - a query to filter the results (e.g. df.A > 10)

    This is maintained as a 'task graph' (inspired by dask)
    (see https://docs.dask.org/en/latest/spec.html)
    """
    def __init__(self, tasks=None, arithmetic_op_fields_task=None):
        if tasks is None:
            self._tasks = []
        else:
            self._tasks = tasks
        self._arithmetic_op_fields_task = arithmetic_op_fields_task

    def __constructor__(self, *args, **kwargs):
        return type(self)(*args, **kwargs)

    def copy(self):
        return self.__constructor__(
            tasks=copy.deepcopy(self._tasks),
            arithmetic_op_fields_task=copy.deepcopy(
                self._arithmetic_op_fields_task),
        )

    def head(self, index, n):
        # Add a task that is an ascending sort with size=n
        task = HeadTask(index.sort_field, n)
        self._tasks.append(task)

    def tail(self, index, n):
        # Add a task that is descending sort with size=n
        task = TailTask(index.sort_field, n)
        self._tasks.append(task)

    def arithmetic_op_fields(self, display_name, arithmetic_series):
        if self._arithmetic_op_fields_task is None:
            self._arithmetic_op_fields_task = ArithmeticOpFieldsTask(
                display_name, arithmetic_series)
        else:
            self._arithmetic_op_fields_task.update(display_name,
                                                   arithmetic_series)

    def get_arithmetic_op_fields(self):
        # get an ArithmeticOpFieldsTask if it exists
        return self._arithmetic_op_fields_task

    def __repr__(self):
        return repr(self._tasks)

    def count(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        # Elasticsearch _count is very efficient and so used to return results here. This means that
        # data frames that have restricted size or sort params will not return valid results
        # (_count doesn't support size).
        # Longer term we may fall back to pandas, but this may result in loading all index into memory.
        if self._size(query_params, post_processing) is not None:
            raise NotImplementedError(
                f"Requesting count with additional query and processing parameters "
                f"not supported {query_params} {post_processing}")

        # Only return requested field_names
        fields = query_compiler.get_field_names(include_scripted_fields=False)

        counts = {}
        for field in fields:
            body = Query(query_params["query"])
            body.exists(field, must=True)

            field_exists_count = query_compiler._client.count(
                index=query_compiler._index_pattern, body=body.to_count_body())
            counts[field] = field_exists_count

        return pd.Series(data=counts, index=fields)

    def mean(self, query_compiler, numeric_only=True):
        return self._metric_aggs(query_compiler,
                                 "avg",
                                 numeric_only=numeric_only)

    def sum(self, query_compiler, numeric_only=True):
        return self._metric_aggs(query_compiler,
                                 "sum",
                                 numeric_only=numeric_only)

    def max(self, query_compiler, numeric_only=True):
        return self._metric_aggs(query_compiler,
                                 "max",
                                 numeric_only=numeric_only,
                                 keep_original_dtype=True)

    def min(self, query_compiler, numeric_only=True):
        return self._metric_aggs(query_compiler,
                                 "min",
                                 numeric_only=numeric_only,
                                 keep_original_dtype=True)

    def nunique(self, query_compiler):
        return self._metric_aggs(query_compiler,
                                 "cardinality",
                                 field_types="aggregatable")

    def value_counts(self, query_compiler, es_size):
        return self._terms_aggs(query_compiler, "terms", es_size)

    def hist(self, query_compiler, bins):
        return self._hist_aggs(query_compiler, bins)

    def _metric_aggs(
        self,
        query_compiler,
        func,
        field_types=None,
        numeric_only=None,
        keep_original_dtype=False,
    ):
        """
        Parameters
        ----------
        field_types: str, default None
            if `aggregatable` use only field_names whose fields in elasticseach are aggregatable.
            If `None`, use only numeric fields.
        keep_original_dtype : bool, default False
            if `True` the output values should keep the same domain as the input values, i.e. booleans should be booleans

        Returns
        -------
        pandas.Series
            Series containing results of `func` applied to the field_name(s)
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        body = Query(query_params["query"])

        results = {}

        # some metrics aggs (including cardinality) work on all aggregatable fields
        # therefore we include an optional all parameter on operations
        # that call _metric_aggs
        if field_types == "aggregatable":
            aggregatable_field_names = (
                query_compiler._mappings.aggregatable_field_names())

            for field in aggregatable_field_names.keys():
                body.metric_aggs(field, func, field)

            response = query_compiler._client.search(
                index=query_compiler._index_pattern,
                size=0,
                body=body.to_search_body())

            # Results are of the form
            # "aggregations" : {
            #   "customer_full_name.keyword" : {
            #     "value" : 10
            #   }
            # }

            # map aggregatable (e.g. x.keyword) to field_name
            for key, value in aggregatable_field_names.items():
                results[value] = response["aggregations"][key]["value"]
        else:
            if numeric_only:
                (
                    pd_dtypes,
                    source_fields,
                    date_formats,
                ) = query_compiler._mappings.metric_source_fields(
                    include_bool=True)
            else:
                # The only non-numerics we support are bool and timestamps currently
                # strings are not supported by metric aggs in ES
                # TODO - sum isn't supported for Timestamp in pandas - although ES does attempt to do it
                (
                    pd_dtypes,
                    source_fields,
                    date_formats,
                ) = query_compiler._mappings.metric_source_fields(
                    include_bool=True, include_timestamp=True)

            for field in source_fields:
                body.metric_aggs(field, func, field)

            response = query_compiler._client.search(
                index=query_compiler._index_pattern,
                size=0,
                body=body.to_search_body())

            # Results are of the form
            # "aggregations" : {
            #   "AvgTicketPrice" : {
            #     "value" : 628.2536888148849
            #   },
            #   "timestamp": {
            #     "value": 1.5165624455644382E12,
            #     "value_as_string": "2018-01-21T19:20:45.564Z"
            #   }
            # }
            for pd_dtype, field, date_format in zip(pd_dtypes, source_fields,
                                                    date_formats):
                if is_datetime_or_timedelta_dtype(pd_dtype):
                    results[field] = elasticsearch_date_to_pandas_date(
                        response["aggregations"][field]["value_as_string"],
                        date_format)
                elif keep_original_dtype:
                    results[field] = pd_dtype.type(
                        response["aggregations"][field]["value"])
                else:
                    results[field] = response["aggregations"][field]["value"]

        # Return single value if this is a series
        # if len(numeric_source_fields) == 1:
        #    return np.float64(results[numeric_source_fields[0]])
        s = pd.Series(data=results, index=results.keys())

        return s

    def _terms_aggs(self, query_compiler, func, es_size=None):
        """
        Parameters
        ----------
        es_size: int, default None
            Parameter used by Series.value_counts()

        Returns
        -------
        pandas.Series
            Series containing results of `func` applied to the field_name(s)
        """
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        # Get just aggregatable field_names
        aggregatable_field_names = query_compiler._mappings.aggregatable_field_names(
        )

        body = Query(query_params["query"])

        for field in aggregatable_field_names.keys():
            body.terms_aggs(field, func, field, es_size=es_size)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())

        results = {}

        for key in aggregatable_field_names.keys():
            # key is aggregatable field, value is label
            # e.g. key=category.keyword, value=category
            for bucket in response["aggregations"][key]["buckets"]:
                results[bucket["key"]] = bucket["doc_count"]

        try:
            # get first value in dict (key is .keyword)
            name = list(aggregatable_field_names.values())[0]
        except IndexError:
            name = None

        s = pd.Series(data=results, index=results.keys(), name=name)

        return s

    def _hist_aggs(self, query_compiler, num_bins):
        # Get histogram bins and weights for numeric field_names
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        numeric_source_fields = query_compiler._mappings.numeric_source_fields(
        )

        body = Query(query_params["query"])

        min_aggs = self._metric_aggs(query_compiler, "min", numeric_only=True)
        max_aggs = self._metric_aggs(query_compiler, "max", numeric_only=True)

        for field in numeric_source_fields:
            body.hist_aggs(field, field, min_aggs, max_aggs, num_bins)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())
        # results are like
        # "aggregations" : {
        #     "DistanceKilometers" : {
        #       "buckets" : [
        #         {
        #           "key" : 0.0,
        #           "doc_count" : 2956
        #         },
        #         {
        #           "key" : 1988.1482421875,
        #           "doc_count" : 768
        #         },
        #         ...

        bins = {}
        weights = {}

        # There is one more bin that weights
        # len(bins) = len(weights) + 1

        # bins = [  0.  36.  72. 108. 144. 180. 216. 252. 288. 324. 360.]
        # len(bins) == 11
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   394.]
        # len(weights) == 10

        # ES returns
        # weights = [10066.,   263.,   386.,   264.,   273.,   390.,   324.,   438.,   261.,   252.,    142.]
        # So sum last 2 buckets
        for field in numeric_source_fields:

            # in case of series let plotting.ed_hist_series thrown an exception
            if not response.get("aggregations"):
                continue

            # in case of dataframe, throw warning that field is excluded
            if not response["aggregations"].get(field):
                warnings.warn(
                    f"{field} has no meaningful histogram interval and will be excluded. "
                    f"All values 0.",
                    UserWarning,
                )
                continue

            buckets = response["aggregations"][field]["buckets"]

            bins[field] = []
            weights[field] = []

            for bucket in buckets:
                bins[field].append(bucket["key"])

                if bucket == buckets[-1]:
                    weights[field][-1] += bucket["doc_count"]
                else:
                    weights[field].append(bucket["doc_count"])

        df_bins = pd.DataFrame(data=bins)
        df_weights = pd.DataFrame(data=weights)

        return df_bins, df_weights

    @staticmethod
    def _map_pd_aggs_to_es_aggs(pd_aggs):
        """
        Args:
            pd_aggs - list of pandas aggs (e.g. ['mad', 'min', 'std'] etc.)

        Returns:
            ed_aggs - list of corresponding es_aggs (e.g. ['median_absolute_deviation', 'min', 'std'] etc.)

        Pandas supports a lot of options here, and these options generally work on text and numerics in pandas.
        Elasticsearch has metric aggs and terms aggs so will have different behaviour.

        Pandas aggs that return field_names (as opposed to transformed rows):

        all
        any
        count
        mad
        max
        mean
        median
        min
        mode
        quantile
        rank
        sem
        skew
        sum
        std
        var
        nunique
        """
        ed_aggs = []
        for pd_agg in pd_aggs:
            if pd_agg == "count":
                ed_aggs.append("count")
            elif pd_agg == "mad":
                ed_aggs.append("median_absolute_deviation")
            elif pd_agg == "max":
                ed_aggs.append("max")
            elif pd_agg == "mean":
                ed_aggs.append("avg")
            elif pd_agg == "median":
                ed_aggs.append(("percentiles", "50.0"))
            elif pd_agg == "min":
                ed_aggs.append("min")
            elif pd_agg == "mode":
                # We could do this via top term
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "quantile":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "rank":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "sem":
                # TODO
                raise NotImplementedError(pd_agg, " not currently implemented")
            elif pd_agg == "sum":
                ed_aggs.append("sum")
            elif pd_agg == "std":
                ed_aggs.append(("extended_stats", "std_deviation"))
            elif pd_agg == "var":
                ed_aggs.append(("extended_stats", "variance"))
            else:
                raise NotImplementedError(pd_agg, " not currently implemented")

        # TODO - we can optimise extended_stats here as if we have 'count' and 'std' extended_stats would
        #   return both in one call

        return ed_aggs

    def aggs(self, query_compiler, pd_aggs):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        field_names = query_compiler.get_field_names(
            include_scripted_fields=False)

        body = Query(query_params["query"])

        # convert pandas aggs to ES equivalent
        es_aggs = self._map_pd_aggs_to_es_aggs(pd_aggs)

        for field in field_names:
            for es_agg in es_aggs:
                # If we have multiple 'extended_stats' etc. here we simply NOOP on 2nd call
                if isinstance(es_agg, tuple):
                    body.metric_aggs(es_agg[0] + "_" + field, es_agg[0], field)
                else:
                    body.metric_aggs(es_agg + "_" + field, es_agg, field)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())
        """
        Results are like (for 'sum', 'min')

             AvgTicketPrice  DistanceKilometers  DistanceMiles  FlightDelayMin
        sum    8.204365e+06        9.261629e+07   5.754909e+07          618150
        min    1.000205e+02        0.000000e+00   0.000000e+00               0
        """
        results = {}

        for field in field_names:
            values = list()
            for es_agg in es_aggs:
                if isinstance(es_agg, tuple):
                    values.append(response["aggregations"][es_agg[0] + "_" +
                                                           field][es_agg[1]])
                else:
                    values.append(response["aggregations"][es_agg + "_" +
                                                           field]["value"])

            results[field] = values

        df = pd.DataFrame(data=results, index=pd_aggs)

        return df

    def describe(self, query_compiler):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        numeric_source_fields = query_compiler._mappings.numeric_source_fields(
        )

        # for each field we compute:
        # count, mean, std, min, 25%, 50%, 75%, max
        body = Query(query_params["query"])

        for field in numeric_source_fields:
            body.metric_aggs("extended_stats_" + field, "extended_stats",
                             field)
            body.metric_aggs("percentiles_" + field, "percentiles", field)

        response = query_compiler._client.search(
            index=query_compiler._index_pattern,
            size=0,
            body=body.to_search_body())

        results = {}

        for field in numeric_source_fields:
            values = list()
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["count"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["avg"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["std_deviation"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["min"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["25.0"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["50.0"])
            values.append(response["aggregations"]["percentiles_" +
                                                   field]["values"]["75.0"])
            values.append(response["aggregations"]["extended_stats_" +
                                                   field]["max"])

            # if not None
            if values.count(None) < len(values):
                results[field] = values

        df = pd.DataFrame(
            data=results,
            index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
        )

        return df

    def to_pandas(self, query_compiler, show_progress=False):
        class PandasDataFrameCollector:
            def __init__(self, show_progress):
                self._df = None
                self._show_progress = show_progress

            def collect(self, df):
                # This collector does not batch data on output. Therefore, batch_size is fixed to None and this method
                # is only called once.
                if self._df is not None:
                    raise RuntimeError(
                        "Logic error in execution, this method must only be called once for this"
                        "collector - batch_size == None")
                self._df = df

            @staticmethod
            def batch_size():
                # Do not change (see notes on collect)
                return None

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasDataFrameCollector(show_progress)

        self._es_results(query_compiler, collector)

        return collector._df

    def to_csv(self, query_compiler, show_progress=False, **kwargs):
        class PandasToCSVCollector:
            def __init__(self, show_progress, **args):
                self._args = args
                self._show_progress = show_progress
                self._ret = None
                self._first_time = True

            def collect(self, df):
                # If this is the first time we collect results, then write header, otherwise don't write header
                # and append results
                if self._first_time:
                    self._first_time = False
                    df.to_csv(**self._args)
                else:
                    # Don't write header, and change mode to append
                    self._args["header"] = False
                    self._args["mode"] = "a"
                    df.to_csv(**self._args)

            @staticmethod
            def batch_size():
                # By default read n docs and then dump to csv
                batch_size = DEFAULT_CSV_BATCH_OUTPUT_SIZE
                return batch_size

            @property
            def show_progress(self):
                return self._show_progress

        collector = PandasToCSVCollector(show_progress, **kwargs)

        self._es_results(query_compiler, collector)

        return collector._ret

    def _es_results(self, query_compiler, collector):
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size, sort_params = Operations._query_params_to_size_and_sort(
            query_params)

        script_fields = query_params["query_script_fields"]
        query = Query(query_params["query"])

        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        # Only return requested field_names
        _source = query_compiler.get_field_names(include_scripted_fields=False)
        if _source:
            # For query_compiler._client.search we could add _source
            # as a parameter, or add this value in body.
            #
            # If _source is a parameter it is encoded into to the url.
            #
            # If _source is a large number of fields (1000+) then this can result in an
            # extremely long url and a `too_long_frame_exception`. Therefore, add
            # _source to the body rather than as a _source parameter
            body["_source"] = _source
        else:
            _source = False

        es_results = None

        # If size=None use scan not search - then post sort results when in df
        # If size>10000 use scan
        is_scan = False
        if size is not None and size <= DEFAULT_ES_MAX_RESULT_WINDOW:
            if size > 0:
                try:

                    es_results = query_compiler._client.search(
                        index=query_compiler._index_pattern,
                        size=size,
                        sort=sort_params,
                        body=body,
                    )
                except Exception:
                    # Catch all ES errors and print debug (currently to stdout)
                    error = {
                        "index": query_compiler._index_pattern,
                        "size": size,
                        "sort": sort_params,
                        "body": body,
                    }
                    print("Elasticsearch error:", error)
                    raise
        else:
            is_scan = True
            es_results = query_compiler._client.scan(
                index=query_compiler._index_pattern, query=body)
            # create post sort
            if sort_params is not None:
                post_processing.append(SortFieldAction(sort_params))

        if is_scan:
            while True:
                partial_result, df = query_compiler._es_results_to_pandas(
                    es_results, collector.batch_size(),
                    collector.show_progress)
                df = self._apply_df_post_processing(df, post_processing)
                collector.collect(df)
                if not partial_result:
                    break
        else:
            partial_result, df = query_compiler._es_results_to_pandas(
                es_results)
            df = self._apply_df_post_processing(df, post_processing)
            collector.collect(df)

    def index_count(self, query_compiler, field):
        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            # TODO - this is not necessarily valid as the field may not exist in ALL these docs
            return size

        body = Query(query_params["query"])
        body.exists(field, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern, body=body.to_count_body())

    def _validate_index_operation(self, query_compiler, items):
        if not isinstance(items, list):
            raise TypeError(f"list item required - not {type(items)}")

        # field is the index field so count values
        query_params, post_processing = self._resolve_tasks(query_compiler)

        size = self._size(query_params, post_processing)

        # Size is dictated by operations
        if size is not None:
            raise NotImplementedError(
                f"Can not count field matches if size is set {size}")

        return query_params, post_processing

    def index_matches_count(self, query_compiler, field, items):
        query_params, post_processing = self._validate_index_operation(
            query_compiler, items)

        body = Query(query_params["query"])

        if field == Index.ID_INDEX_FIELD:
            body.ids(items, must=True)
        else:
            body.terms(field, items, must=True)

        return query_compiler._client.count(
            index=query_compiler._index_pattern, body=body.to_count_body())

    def drop_index_values(self, query_compiler, field, items):
        self._validate_index_operation(query_compiler, items)

        # Putting boolean queries together
        # i = 10
        # not i = 20
        # _id in [1,2,3]
        # _id not in [1,2,3]
        # a in ['a','b','c']
        # b not in ['a','b','c']
        # For now use term queries
        if field == Index.ID_INDEX_FIELD:
            task = QueryIdsTask(False, items)
        else:
            task = QueryTermsTask(False, field, items)
        self._tasks.append(task)

    @staticmethod
    def _query_params_to_size_and_sort(query_params):
        sort_params = None
        if query_params["query_sort_field"] and query_params[
                "query_sort_order"]:
            sort_params = (
                query_params["query_sort_field"] + ":" +
                SortOrder.to_string(query_params["query_sort_order"]))

        size = query_params["query_size"]

        return size, sort_params

    @staticmethod
    def _count_post_processing(post_processing):
        size = None
        for action in post_processing:
            if isinstance(action, SizeTask):
                if size is None or action.size() < size:
                    size = action.size()

        return size

    @staticmethod
    def _apply_df_post_processing(df, post_processing):
        for action in post_processing:
            df = action.resolve_action(df)

        return df

    def _resolve_tasks(self, query_compiler):
        # We now try and combine all tasks into an Elasticsearch query
        # Some operations can be simply combined into a single query
        # other operations require pre-queries and then combinations
        # other operations require in-core post-processing of results
        query_params = {
            "query_sort_field": None,
            "query_sort_order": None,
            "query_size": None,
            "query_fields": None,
            "query_script_fields": None,
            "query": Query(),
        }

        post_processing = []

        for task in self._tasks:
            query_params, post_processing = task.resolve_task(
                query_params, post_processing, query_compiler)

        if self._arithmetic_op_fields_task is not None:
            (
                query_params,
                post_processing,
            ) = self._arithmetic_op_fields_task.resolve_task(
                query_params, post_processing, query_compiler)

        return query_params, post_processing

    def _size(self, query_params, post_processing):
        # Shrink wrap code around checking if size parameter is set
        size = query_params["query_size"]  # can be None

        pp_size = self._count_post_processing(post_processing)
        if pp_size is not None:
            if size is not None:
                size = min(size, pp_size)
            else:
                size = pp_size

        # This can return None
        return size

    def info_es(self, query_compiler, buf):
        buf.write("Operations:\n")
        buf.write(f" tasks: {self._tasks}\n")

        query_params, post_processing = self._resolve_tasks(query_compiler)
        size, sort_params = Operations._query_params_to_size_and_sort(
            query_params)
        _source = query_compiler._mappings.get_field_names()

        script_fields = query_params["query_script_fields"]
        query = Query(query_params["query"])
        body = query.to_search_body()
        if script_fields is not None:
            body["script_fields"] = script_fields

        buf.write(f" size: {size}\n")
        buf.write(f" sort_params: {sort_params}\n")
        buf.write(f" _source: {_source}\n")
        buf.write(f" body: {body}\n")
        buf.write(f" post_processing: {post_processing}\n")

    def update_query(self, boolean_filter):
        task = BooleanFilterTask(boolean_filter)
        self._tasks.append(task)