def __init__(self, args): self.logger = get_logger("PS", level=args.log_level.upper()) self.grads_to_wait = args.grads_to_wait self.lr_staleness_modulation = args.lr_staleness_modulation self.sync_version_tolerance = args.sync_version_tolerance self.use_async = args.use_async self.port = args.port model_module = load_module( get_module_file_path(args.model_zoo, args.model_def)).__dict__ self.optimizer = model_module[args.optimizer]() self.ps_id = args.ps_id self.num_ps_pods = args.num_ps_pods self.num_workers = args.num_workers # Create Parameters instance self.parameters = Parameters() if args.master_addr is None: raise ValueError("master_addr is missing for parameter servers") self.master_channel = build_channel(args.master_addr) self.evaluation_steps = args.evaluation_steps self.master_name = get_master_pod_name(args.job_name) self.namespace = args.namespace self._init_checkpoint_saver(args) self._restore_params_from_checkpoint(args.checkpoint_dir_for_init) self._debug_info_needed = args.log_level.upper() == "DEBUG"
def create_pserver(model_zoo_path, model_def, grads_to_wait, use_async, num_ps_pods): ports = [i + 12345 for i in range(num_ps_pods)] channels = [] for port in ports: addr = "localhost:%d" % port channel = build_channel(addr) channels.append(channel) pservers = [] for port in ports: args = PserverArgs( grads_to_wait=grads_to_wait, use_async=True, port=port, model_zoo=model_zoo_path, model_def=model_def, ) pserver = ParameterServer(args) pserver.prepare() pservers.append(pserver) for channel in channels: grpc.channel_ready_future(channel).result() return ports, channels, pservers
def build_master_client(): master_addr = os.getenv("MASTER_ADDR", "localhost:12345") worker_id = int(os.getenv("WORKER_ID", 0)) master_client = MasterClient(build_channel(master_addr), worker_id) return master_client
def setUp(self): self._port = 9999 addr = "localhost:%d" % self._port self._channel = build_channel(addr) embedding_info = elasticdl_pb2.EmbeddingTableInfo() embedding_info.name = "layer_a" embedding_info.dim = 32 embedding_info.initializer = "normal" self._embedding_info = embedding_info self._server = None
def build_ps_client(ps_addrs, logger): """ Build a PSClient from the address list. Args: ps_addrs: a string of common separated format that stands for a list of address for parameter servers logger: a logger object Returns: A PS Client. """ if not ps_addrs: return None ps_channels = [] ps_addrs = ps_addrs.split(",") for addr in ps_addrs: # addr is in the form as "ps-pod-name.namespace.svc:port" channel = build_channel(addr) succeeded = False for i in range(CONNECT_PS_MAX_RETRIES): try: grpc.channel_ready_future(channel).result( timeout=CONNECT_PS_TIMEOUT) logger.info("grpc channel %s to connect pod %s is ready" % (addr, addr.split(".")[0])) ps_channels.append(channel) succeeded = True break except grpc.FutureTimeoutError: logger.warning("Failed to connect pod %s with %d retry" % (addr.split(".")[0], i)) if not succeeded: raise TimeoutError("Time out to connect pod %s with 3 retries" % addr.split(".")[0]) ps_client = PSClient(ps_channels) return ps_client
def main(): args = parse_worker_args() logger = log_utils.get_logger(__name__) master_addr = args.master_addr worker_id = int(args.worker_id) logger.info("Starting worker %d", worker_id) master_client = MasterClient(build_channel(master_addr), worker_id) logger.info("Building PS connection....") ps_client = (build_ps_client(args.ps_addrs, logger) if args.distribution_strategy == DistributionStrategy.PARAMETER_SERVER else None) logger.info("Have builded PS.") worker = Worker( args, master_client=master_client, ps_client=ps_client, set_parallelism=True, ) worker.run()
def distributed_train_and_evaluate( feature_shape, model_zoo_path, model_def, model_params="", eval_metrics_fn="eval_metrics_fn", loss="loss", training=True, dataset_name=DatasetName.IMAGE_DEFAULT, use_async=False, get_model_steps=1, ps_channels=None, pservers=None, distribution_strategy=DistributionStrategy.PARAMETER_SERVER, ): """Runs distributed training and evaluation with a local master. Grpc calls are mocked by local master call. Args: feature_shape: The shape of model input. model_zoo_path: The directory that contains user-defined model files or a specific model file. model_def: The import path to the model definition function/class in the model zoo, e.g. "cifar10_subclass.CustomModel". model_params: The dictionary of model parameters in a string that will be used to instantiate the model, e.g. "param1=1,param2=2". eval_metrics_fn: The name of the evaluation metrics function defined in the model file. loss: The name of the loss function defined in the model file. training: True for job type `TRAIN_WITH_EVALUATION`, False for job type `EVALUATION`. dataset_name: A dataset name from `DatasetName`. use_async: A bool. True if using asynchronous updates. get_model_steps: Worker will perform `get_model` from the parameter server every this many steps. ps_channels: A channel list to all parameter server pods. pservers: A list of parameter server pods. distribution_strategy: The distribution startegy used by workers, e.g. DistributionStrategy.PARAMETER_SERVER or DistributionStrategy.AllreduceStrategy. Returns: An integer indicating the model version after the distributed training and evaluation. """ job_type = (JobType.TRAINING_WITH_EVALUATION if training else JobType.EVALUATION_ONLY) evaluation_steps = 1 if job_type == JobType.TRAINING_WITH_EVALUATION else 0 batch_size = 8 if dataset_name == DatasetName.IMAGENET else 16 pservers = pservers or [] ps_channels = ps_channels or [] model_module = load_module(get_module_file_path(model_zoo_path, model_def)).__dict__ worker_arguments = [ "--worker_id", "1", "--job_type", job_type, "--minibatch_size", batch_size, "--model_zoo", model_zoo_path, "--model_def", model_def, "--model_params", model_params, "--loss", loss, "--get_model_steps", get_model_steps, "--distribution_strategy", distribution_strategy, ] args = parse_worker_args(worker_arguments) if dataset_name in [DatasetName.IMAGENET, DatasetName.FRAPPE]: record_num = batch_size else: record_num = 128 shards = [( create_recordio_file(record_num, dataset_name, feature_shape), 0, record_num, )] task_args = TaskManagerArgs(minibatch_size=2, num_minibatches_per_task=32) task_d = TaskManager(task_args) if training: task_d._training_shards = shards task_d._evaluation_shards = shards task_d.create_tasks(elasticai_api_pb2.TRAINING) task_d.create_tasks(elasticai_api_pb2.EVALUATION) else: task_d._training_shards = [] task_d._evaluation_shards = shards task_d.create_tasks(elasticai_api_pb2.TRAINING) if training: evaluation_service = EvaluationService( task_d, evaluation_steps, False, model_module[eval_metrics_fn], ) else: evaluation_service = EvaluationService( task_d, evaluation_steps, True, model_module[eval_metrics_fn], ) task_d.set_evaluation_service(evaluation_service) master = Mock( task_d=task_d, instance_manager=None, distribution_strategy=None, ) def master_creator(): return MasterServicer(master.task_d, master.instance_manager, None, evaluation_service) svc, port = _server(master_creator) mc = MasterClient(build_channel("localhost:%d" % port), 1) worker = Worker(args, master_client=mc, ps_client=PSClient(ps_channels)) for pservicer in pservers: # FIXME(yancey1989): decouple pserver and master client pservicer._master_stub = mc worker.run() task = mc.get_task() # stop the master servicer svc.stop(0) # No more task. if task.shard.name: raise RuntimeError( "There are some tasks unfinished after worker exits.") return task.model_version