Example #1
0
class RapidNHEvent(DocType):
    class Meta:
        index = settings.ES_INDICES['rapid']['name']
        doc_type = settings.ES_INDICES['rapid']['documents'][1]['name']
        dynamic = MetaField('strict')

    event_date = Date()
    created_date = Date()
    title = Text(analyzer='english')
    event_type = String(fields={'_exact': Keyword()})
    location_description = Text(analyzer='english',
                                fields={'_exact': Keyword()})
    location = GeoPoint()
    main_image_url = String(fields={'_exact': Keyword()})
    main_image_uuid = String(fields={'_exact': Keyword()})
    datasets = Nested(
        properties={
            "id": String(fields={'_exact': Keyword()}),
            "title": String(fields={'_exact': Keyword()}),
            "doi": String(fields={'_exact': Keyword()}),
            "url": String(fields={'_exact': Keyword()}),
        })

    def save(self, **kwargs):
        # self.created_date = datetime.utcnow()
        return super(RapidNHEvent, self).save(**kwargs)
Example #2
0
class Products(DocType):
    about = Text(fields={"keyword": Keyword()}, required=True)
    brand = Text(fields={"keyword": Keyword()}, required=True)
    care = Text(fields={"keyword": Keyword()}, required=True)
    code = Text(fields={"keyword": Keyword()}, required=True)
    details = Text(fields={"keyword": Keyword()}, required=True)
    gender = Text(fields={"keyword": Keyword()}, required=True)
    images = Text(fields={"keyword": Keyword()}, required=True)
    kind = Text(fields={"keyword": Keyword()}, required=True)
    link = Text(fields={"keyword": Keyword()}, required=True)
    name = Text(fields={"keyword": Keyword()}, required=True)
    price = Nested(
        properties={
            "currency": Text(fields={'keyword': Keyword()}, required=True),
            "outlet": Float(required=True),
            "retail": Float(required=True)
        })
    sessionid = Text(fields={"keyword": Keyword()}, required=True)
    sessionname = Text(fields={"keyword": Keyword()}, required=True)
    storename = Text(fields={"keyword": Keyword()}, required=True)

    class Meta:
        index = "store"
        type = "products"
        doc_type = "products"
Example #3
0
class Article(DocType):
    article_id = Keyword(ignore_above=256)
    article_title = Text(analyzer='ik_max_word', search_analyzer='ik_max_word')
    author = Keyword(ignore_above=256)
    author_parsed = Keyword(ignore_above=256)
    board = Keyword(ignore_above=256)
    content = Text(analyzer='ik_max_word', search_analyzer='ik_max_word')
    date = Keyword(ignore_above=256)
    date_parsed = Date(default_timezone='Asia/Taipei')
    ip = Keyword(ignore_above=256)
    message_count = Nested(MessageCount)
    messages = Nested(Message)

    class Meta:
        index = 'ptt-2018-06'
        doc_type = 'article'
Example #4
0
class CRECDoc(DocType):
    """An elasticsearch_dsl document model for CREC documents.
    """

    title = Text()
    title_part = Text()
    date_issued = Date()
    content = Text(fielddata=True)
    crec_id = Text()
    pdf_url = Text()
    html_url = Text()
    page_start = Text()
    page_end = Text()
    speakers = Text()
    segments = Nested(
        properties={
            'segment_id': Text(),
            'speaker': Text(),
            'text': Text(),
            'bioguide_id': Text()
        }
    )

    class Meta:
        index = settings.ES_CW_INDEX
Example #5
0
class IndexedSocialIdentity(InnerObjectWrapper):
    """Contact indexed social identity model."""

    name = Text()
    type = Keyword()
    # Abstract everything else in a map
    infos = Nested()
Example #6
0
class MentorProject(Document):
    name = Keyword(required=True)
    company = Text()
    bio = Text()
    backgroundRural = Boolean(required=True)
    preferStudentUnderRep = Short(required=True)  # (0-2)
    preferToolExistingKnowledge = Boolean(required=True)
    okExtended = Boolean(required=True)
    okTimezoneDifference = Boolean(required=True)
    timezone = Integer(required=True)  # +- UTC
    id = Keyword(required=True)
    proj_description = Text(required=True)
    proj_tags = Keyword(multi=True)
    numStudentsSelected = Short()
    listStudentsSelected = Nested(StudentVote)
    track = Keyword(required=True)

    class Index:
        name = "mentors_index"
        settings = {
            "number_of_shards": 1,
            "number_of_replicas": 0,
        }

    def add_vote(self, student_id, choice):
        self.listStudentsSelected.append(
            StudentVote(student_id=student_id, choice=choice))

    def save(self, **kwargs):
        self.numStudentsSelected = 0
        return super().save(**kwargs)
Example #7
0
class CustomType(DocType):
    business = Nested(
        properties={
            'id': Integer(),
            'name': String(),
        }
    )
class Comment(InnerDoc):
    content = Text()
    created_at = Date()
    author = Object(User)
    history = Nested(History)
    class Meta:
        dynamic = MetaField(False)
Example #9
0
class AgentDocument(DocumentBase):
    id = Keyword()
    task_id = Keyword()
    names = Nested(AgentNameDocument)
    start_date = Date()
    end_date = Date()

    @classmethod
    def get_model(cls):
        return Agent

    @classmethod
    def from_obj(cls, obj):
        if obj.task is None:
            task_id = None
        else:
            task_id = str(obj.task.pk)

        doc = AgentDocument(
            _id=str(obj.pk),
            id=str(obj.pk),
            task_id=task_id,
            names=[
                AgentNameDocument.from_obj(name)
                for name in obj.names.iterator()
            ],
            start_date=obj.start_date,
            end_date=obj.end_date,
        )
        return doc

    class Index:
        name = 'agent'
        analyzers = [autocomplete_analyzer]
Example #10
0
class SocialmediaType(DocType):
    # 微博账户类型

    # suggest = Completion(analyzer=ik_analyzer)
    type = Keyword()
    name = Keyword()
    # account_domain = Keyword()
    screen_name = Text(analyzer="ik_max_word")
    icon = Keyword()
    tweets = Integer()
    followers = Integer()
    following = Integer()
    brief = Keyword()
    # thumb_image = Keyword()
    category = Keyword()
    alpha = Keyword()
    language = Keyword()
    country = Nested(properties={
        "id": Keyword(),
        "name": Text(analyzer="ik_max_word"),
    })

    class Meta:
        index = "weibo_account"
        doc_type = "weibo_account"

        settings = {
            "number_of_shards": 5,
        }
Example #11
0
def test_mapping_can_collect_all_analyzers():
    a1 = analysis.analyzer('my_analyzer1',
        tokenizer='keyword',
        filter=['lowercase', analysis.token_filter('my_filter1', 'stop', stopwords=['a', 'b'])],
    )
    a2 = analysis.analyzer('english')
    a3 = analysis.analyzer('unknown_custom')
    a4 = analysis.analyzer('my_analyzer2', 
        tokenizer=analysis.tokenizer('trigram', 'nGram', min_gram=3, max_gram=3),
        filter=[analysis.token_filter('my_filter2', 'stop', stopwords=['c', 'd'])],
    )

    m = mapping.Mapping('article')
    m.field('title', 'string', analyzer=a1,
        fields={
            'english': String(analyzer=a2),
            'unknown': String(analyzer=a3),
        }
    )
    m.field('comments', Nested(properties={
        'author': String(analyzer=a4)
    }))

    assert {
        'analyzer': {
            'my_analyzer1': {'filter': ['lowercase', 'my_filter1'], 'tokenizer': 'keyword', 'type': 'custom'},
            'my_analyzer2': {'filter': ['my_filter2'], 'tokenizer': 'trigram', 'type': 'custom'}},
        'filter': {
            'my_filter1': {'stopwords': ['a', 'b'], 'type': 'stop'},
            'my_filter2': {'stopwords': ['c', 'd'], 'type': 'stop'},
        },
        'tokenizer': {
            'trigram': {'max_gram': 3, 'min_gram': 3, 'type': 'nGram'},
        }
    } == m._collect_analysis()
Example #12
0
class eBPF_Program_Instance_Document(Base_Document):
    """Represents an eBPF program installed in an execution environment."""

    # id already defined by Elasticsearch
    ebpf_program_catalog_id = Text(required=True)
    exec_env_id = Text(required=True)
    parameters = Nested(eBPF_Program_Instance_Parameter_Inner_Doc)
    description = Text()

    class Index:
        """Elasticsearch configuration."""

        name = 'ebpf-program-instance'

    def edit_parameter(self, parameter):
        so = self.Status_Operation
        id = parameter.get('id', None)
        for p in self.parameters:
            val = parameter.get('value', None)
            ts = parameter.get('timestamp', None)
            if p.id == id:
                if p.value != val or p.timestamp != ts:
                    p.value = val
                    p.timestamp = ts
                    return so.UPDATED
                return so.NOT_MODIFIED
        self.parameters.append(
            eBPF_Program_Instance_Parameter_Inner_Doc(**parameter))
        return so.UPDATED
Example #13
0
class GoodsSKUIndex(Document):
    name = Text(analyzer=html_strip)
    desc = Text(analyzer=html_strip)
    types = Nested(GoodsTypeIndex)

    class Index:
        index = 'goodssku-index'
        name = 'goodssku-index'

    def add_types(self, name):
        self.types.append(GoodsTypeIndex(name=name))

    def save(self, **kwargs):
        return super(GoodsSKUIndex, self).save(**kwargs)

    def delete(self, **kwargs):
        super(GoodsSKUIndex, self).delete(**kwargs)

    # Simple search function, return id
    def search(query="", nested_path="types"):
        q1 = Q("multi_match", query=query)
        q2 = Q('nested',
               inner_hits={},
               path=nested_path,
               query=Q('multi_match', query=query))

        s1 = Search().query(q1)
        s2 = Search().query(q2)
        response1 = s1.execute()
        response2 = s2.execute()
        result1 = (hit.meta.id for hit in response1 if hit.meta)
        result2 = (hit.meta.id for hit in response2 if hit.meta)
        ids = chain(result1, result2)
        return ids
Example #14
0
class DomainResourceRecordDoc(GenericDoc):
    class Meta:
        doc_type = "opendns_domain_resource_record"

    first_seen = Date()
    last_seen = Date()
    rrs = Nested(doc_class=ResourceRecordDoc)
Example #15
0
class Company(Document):
	"""Class representing the searchable companies metadata"""
	name = Text(analyzer='snowball', fields={'raw': Keyword()})
	number = Keyword()
	registered_address = Object(Address)
	category = Keyword()
	status = Keyword()
	country_of_origin = Keyword()
	dissolution = Date(format='dd/MM/yyyy')
	incorporation = Date(format='dd/MM/yyyy')

	accounts = Object(Accounts)
	returns = Object(Returns)
	mortgages = Object(Mortgages)
	SIC_code = [
		Text(analyzer='snowball', fields={'raw': Keyword()}),
		Text(analyzer='snowball', fields={'raw': Keyword()}),
		Text(analyzer='snowball', fields={'raw': Keyword()}),
		Text(analyzer='snowball', fields={'raw': Keyword()})
	]
	limited_partnerships = Object(LimitedPartnerships)
	URI = Keyword()
	previous_name = Nested(PreviousName)
	confirmation_statement = Object(Returns)

	def add_address(self, care_of, po_box, line1, line2, town, county, country, post_code):
		"""Change the registered address"""
		self.registered_address.update(
			Address(
				care_of=care_of,
				po_box=po_box,
				line1=line1,
				line2=line2,
				town=town,
				county=county,
				country=country,
				post_code=post_code))

	def age(self):
		"""Calculate the current age of the company"""
		if self.is_dissolved():
			return self.dissolution - self.incorporation
		return datetime.now() - self.incorporation

	def is_dissolved(self):
		"""Check if the company has been dissolved"""
		return self.dissolution >= self.incorporation

	class Index:
		"""The index that all instances of this metadata will be saved to"""
		name = 'companies'
		settings = {
			"number_of_shards"        : 1,
			"mapping.ignore_malformed": True,
		}

	def save(self, **kwargs):
		"""Saves the current item to the index"""
		# self.lines = len(self.body.split())
		return super(Company, self).save(**kwargs)
Example #16
0
def test_properties_can_iterate_over_all_the_fields():
    m = mapping.Mapping('testing')
    m.field('f1', 'string', test_attr='f1', fields={'f2': String(test_attr='f2')})
    m.field('f3', Nested(test_attr='f3', properties={
            'f4': String(test_attr='f4')}))

    assert set(('f1', 'f2', 'f3', 'f4')) == set(f.test_attr for f in m.properties._collect_fields())
class Alternative(Document):
    content = Text()
    confidence = Float()
    alternate = Nested(Alternate)

    class Index:
        name = 'alternatives'
Example #18
0
class Agent_Catalog_Resource_Inner_Doc(Inner_Doc):
    """Agent resource."""

    id = Text(required=True)
    config = Nested(Agent_Catalog_Resource_Config_Inner_Doc, required=True)
    description = Text()
    example = Text()
Example #19
0
class BookmarkSearch(DocType):
	curator_title = Text()
	created_at = Date()
	updated_on = Date()
	rating = Text()
	description = Text()
	user_id = Text()

	work = Nested(BookmarkWorkSearch)

	class Meta:
		index = 'bookmark'

	class Index:
		name = 'bookmark'

	def save(self, ** kwargs):
		self.created_at = datetime.now()
		return super().save(** kwargs)


	def create_from_json(self, bookmark_json):
		BookmarkSearch.init()
		self.curator_title=bookmark_json['curator_title']
		if "description" in bookmark_json:
			self.description=bookmark_json['description']
		if "rating" in bookmark_json:
			self.rating=bookmark_json['rating']
		self.user_id=bookmark_json['user_id']
		self.meta.id = bookmark_json['id']
		bookmark_work_search = BookmarkWorkSearch()
		bookmark_work_search.create_from_json(bookmark_json['work'])
		self.work.append(
			bookmark_work_search)
		self.save()
Example #20
0
class HooverDoc(Document):
    """
    Document with the same fields as documents in hoover-search. This document will be used for created indices.
    The only difference is, that the Text field is replaced with the nested TextUnits.
    """
    attachments = Boolean()
    content_type = Keyword()
    date = Date()
    date_created = Date()
    email_domains = Keyword()
    filetype = Keyword()
    id = Keyword()
    in_reply_to = Keyword()
    lang = Keyword()
    md5 = Keyword()
    message = Keyword()
    message_id = Keyword()
    path = Keyword()
    path_text = Text()
    path_parts = Keyword()
    references = Keyword()
    rev = Integer()
    sha1 = Keyword()
    size = Integer()
    suffix = Keyword()
    thread_index = Keyword()
    word_count = Integer()
    body = Nested(TextUnit)

    def add_unit(self, content, position):
        self.body.append(TextUnit(content=content, position=position))
Example #21
0
class Model(DocType):
    id = Integer()
    name = String(fields={'sub': String()})

    other_models = Nested(
        doc_class=OtherModel,
        multi=True,
        properties={
            'id':
            Integer(),
            'name':
            String(fields={
                'raw': String(index='not_analyzed'),
                'sub': String()
            })
        })

    class Meta:
        index = 'models'

    def get_term_query(self, column_name, value, default_op='should'):
        tq = ElasticSearchMixin.get_match_query(value, default_op)
        if column_name is None:
            column_name = 'name'
        return {'match': {column_name: tq}}
Example #22
0
class GenreDocument(Document):
    """
    Genre Document
    """
    genre_id = Text()
    name = Text(analyzer='snowball', fields={'row': Keyword()}, fielddata=True)
    name_lower = Text(analyzer='snowball',
                      fields={'row': Keyword()},
                      fielddata=True)
    picture = Text()
    is_active = Boolean()
    is_deleted = Boolean()
    is_picture_deleted = Boolean()
    genre_movies = Nested(properties={
        'id': Text(),
        'movie__id': Text(),
        'movie__name': Text(),
    })

    class Index:
        """
        Index class for MovieDocument
        """
        name = ES_DOCUMENT_SET['genre']
        settings = {
            "number_of_shards": ES_DOCUMENT_SET['genre_index_shared'],
        }
Example #23
0
class Account(DocType):
    traderId = Keyword()
    cash = Float()
    positions = Nested()
    allValue = Float()
    timestamp = Date()
    tradingClose = Boolean()

    def copy_for_save(self, trading_close):
        account = Account()
        account.cash = self.cash
        account.traderId = self.traderId
        account.allValue = self.allValue
        account.positions = self.positions
        account.timestamp = account.timestamp
        account.tradingClose = trading_close
        return account

    def save(self, using=None, index=None, validate=True, **kwargs):
        self.meta.id = "{}_{}".format(
            self.traderId, self.timestamp.strftime('%Y-%m-%d %H:%M:%S'))
        return super().save(using, index, validate, **kwargs)

    class Meta:
        doc_type = 'doc'
        all = MetaField(enabled=False)
Example #24
0
class Agent_Catalog_Action_Inner_Doc(Inner_Doc):
    """Agent action."""

    config = Nested(Agent_Catalog_Action_Config_Inner_Doc, required=True)
    status = Text()
    description = Text()
    example = Text()
Example #25
0
class StructureUnitDocument(DocumentBase):
    id = Keyword()
    task_id = Keyword()
    name = Text(analyzer=autocomplete_analyzer,
                search_analyzer='standard',
                fields={'keyword': {
                    'type': 'keyword'
                }})
    type = Keyword()
    desc = Text()  # python migrate_structure_unit_field.py
    comment = Text()
    reference_code = Text(analyzer=autocomplete_analyzer,
                          search_analyzer='standard',
                          fields={'keyword': {
                              'type': 'keyword'
                          }})
    archive = Nested(InnerArchiveDocument)
    start_date = Date()
    end_date = Date()

    @classmethod
    def get_model(cls):
        return StructureUnit

    @classmethod
    def get_index_queryset(cls):
        return StructureUnit.objects.filter(structure__is_template=False)

    @classmethod
    def from_obj(cls, obj):
        structure_set = obj.structure.tagstructure_set
        archive_doc = None
        if structure_set.exists():
            archive = structure_set.first().get_root().tag.current_version
            if archive is not None:
                archive_doc = InnerArchiveDocument.from_obj(archive)

        if obj.task is None:
            task_id = None
        else:
            task_id = str(obj.task.pk)

        doc = StructureUnitDocument(
            _id=obj.pk,
            id=obj.pk,
            task_id=task_id,
            name=obj.name,
            type=obj.type.name,
            desc=obj.description,
            comment=obj.comment,
            reference_code=obj.reference_code,
            archive=archive_doc,
            start_date=obj.start_date,
            end_date=obj.end_date,
        )
        return doc

    class Index:
        name = 'structure_unit'
        analyzers = [autocomplete_analyzer]
Example #26
0
class _AggregateReportDoc(Document):
    class Index:
        name = "dmarc_aggregate"

    xml_schema = Text()
    org_name = Text()
    org_email = Text()
    org_extra_contact_info = Text()
    report_id = Text()
    date_range = Date()
    date_begin = Date()
    date_end = Date()
    errors = Text()
    published_policy = Object(_PublishedPolicy)
    source_ip_address = Ip()
    source_country = Text()
    source_reverse_dns = Text()
    source_Base_domain = Text()
    message_count = Integer
    disposition = Text()
    dkim_aligned = Boolean()
    spf_aligned = Boolean()
    passed_dmarc = Boolean()
    policy_overrides = Nested(_PolicyOverride)
    header_from = Text()
    envelope_from = Text()
    envelope_to = Text()
    dkim_results = Nested(_DKIMResult)
    spf_results = Nested(_SPFResult)

    def add_policy_override(self, type_, comment):
        self.policy_overrides.append(
            _PolicyOverride(type=type_, comment=comment))

    def add_dkim_result(self, domain, selector, result):
        self.dkim_results.append(
            _DKIMResult(domain=domain, selector=selector, result=result))

    def add_spf_result(self, domain, scope, result):
        self.spf_results.append(
            _SPFResult(domain=domain, scope=scope, result=result))

    def save(self, **kwargs):
        self.passed_dmarc = False
        self.passed_dmarc = self.spf_aligned or self.dkim_aligned

        return super().save(**kwargs)
class BlogPost(DocType):
    authors = Nested(required=True,
                     doc_class=Author,
                     properties={
                         'name': String(required=True),
                         'email': String(required=True)
                     })
    created = Date()
Example #28
0
    class Post(Document):
        author = Text()
        content = Text()
        created_at = Date()

        comments = Nested(Comment)

        co = Object(Comment)
Example #29
0
class Publication(Record):
    authors = Nested(Author)
    publication_date = Date(format='yyyy-MM-dd')
    publisher = Text(fields={'keyword': Keyword()})
    serial = Text(fields={'keyword': Keyword()})

    class Meta:
        index = 'publications'
Example #30
0
class Port(Document):
    services = Nested(Service)

    class Index:
        name = 'port'
        settings = {
            'number_of_shards': 2,
        }
Example #31
0
    def build_mapping(cls):
        """Create elasticsearch indexed_contacts mapping object for an user."""
        m = Mapping(cls.doc_type)
        m.meta('_all', enabled=True)

        m.field('user_id', 'keyword')
        m.field('contact_id', 'keyword')

        m.field('additional_name', 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        # addresses
        addresses = Nested(doc_class=IndexedPostalAddress, include_in_all=True,
                           properties={
                               "address_id": "keyword",
                               "label": "text",
                               "type": "keyword",
                               "is_primary": "boolean",
                               "street": "text",
                               "city": "text",
                               "postal_code": "keyword",
                               "country": "text",
                               "region": "text"
                           })
        m.field("addresses", addresses)
        m.field("avatar", "keyword")
        m.field('date_insert', 'date')
        m.field('date_update', 'date')
        m.field('deleted', 'date')
        # emails
        internet_addr = Nested(doc_class=IndexedInternetAddress,
                               include_in_all=True,
                               )
        internet_addr.field("address", "text", analyzer="text_analyzer",
                            fields={
                                "raw": {"type": "keyword"},
                                "parts": {"type": "text",
                                          "analyzer": "email_analyzer"}
                            })
        internet_addr.field("email_id", Keyword())
        internet_addr.field("is_primary", Boolean())
        internet_addr.field("label", "text", analyzer="text_analyzer")
        internet_addr.field("type", Keyword())
        m.field("emails", internet_addr)

        m.field('family_name', "text", fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        m.field('given_name', 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        m.field("groups", Keyword(multi=True))
        # social ids
        social_ids = Nested(doc_class=IndexedSocialIdentity,
                            include_in_all=True,
                            properties={
                                "name": "text",
                                "type": "keyword",
                                "infos": Nested()
                            })
        m.field("identities", social_ids)
        m.field("ims", internet_addr)
        m.field("infos", Nested())
        m.field('name_prefix', 'keyword')
        m.field('name_suffix', 'keyword')
        # organizations
        organizations = Nested(doc_class=IndexedOrganization,
                               include_in_all=True)
        organizations.field("deleted", Boolean())
        organizations.field("department", "text", analyzer="text_analyzer")
        organizations.field("is_primary", Boolean())
        organizations.field("job_description", "text")
        organizations.field("label", "text", analyzer="text_analyzer")
        organizations.field("name", 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        organizations.field("organization_id", Keyword())
        organizations.field("title", Keyword())
        organizations.field("type", Keyword())
        m.field("organizations", organizations)
        # phones
        phones = Nested(doc_class=IndexedPhone, include_in_all=True,
                        properties={
                            "is_primary": "boolean",
                            "number": "text",
                            "normalized_number": "text",
                            "phone_id": "keyword",
                            "type": "keyword",
                            "uri": "keyword"
                        })

        m.field("phones", phones)
        # pi
        pi = Object(doc_class=PIIndexModel, include_in_all=True,
                    properties={
                        "comportment": "integer",
                        "context": "integer",
                        "date_update": "date",
                        "technic": "integer",
                        "version": "integer"
                    })
        m.field("pi", pi)
        m.field("privacy_features", Object(include_in_all=True))
        m.field("public_key", Nested())
        m.field("social_identities", social_ids)
        m.field("tags", Keyword(multi=True))
        m.field('title', 'text', analyzer="text_analyzer",
                fields={
                    "raw": {"type": "keyword"}
                })

        return m
Example #32
0
    def build_mapping(cls):
        """Generate the mapping definition for indexed messages"""
        m = Mapping(cls.doc_type)
        m.meta('_all', enabled=True)
        m.field('user_id', 'keyword')
        # attachments
        m.field('attachments', Nested(doc_class=IndexedMessageAttachment,
                                      include_in_all=True,
                                      properties={
                                          "content_type": Keyword(),
                                          "file_name": Keyword(),
                                          "is_inline": Boolean(),
                                          "size": Integer(),
                                          "temp_id": Keyword(),
                                          "url": Keyword(),
                                          "mime_boundary": Keyword()
                                      })
                )
        m.field('body_html', 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        m.field('body_plain', 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        m.field('date', 'date')
        m.field('date_delete', 'date')
        m.field('date_insert', 'date')
        m.field('date_sort', 'date')
        m.field('discussion_id', 'keyword')
        # external references
        m.field('external_references',
                Nested(doc_class=IndexedExternalReferences,
                       include_in_all=True,
                       properties={
                           "ancestors_ids": Keyword(),
                           "message_id": Keyword(),
                           "parent_id": Keyword()
                       })
                )
        m.field('importance_level', 'short')
        m.field('is_answered', 'boolean')
        m.field('is_draft', 'boolean')
        m.field('is_unread', 'boolean')
        m.field('is_received', 'boolean')
        m.field('message_id', 'keyword')
        m.field('parent_id', 'keyword')
        # participants
        participants = Nested(doc_class=IndexedParticipant,
                              include_in_all=True)
        participants.field("address", "text", analyzer="text_analyzer",
                           fields={
                               "raw": {"type": "keyword"},
                               "parts": {"type": "text",
                                         "analyzer": "email_analyzer"}
                           })
        participants.field("contact_ids", Keyword(multi=True))
        participants.field("label", "text", analyzer="text_analyzer")
        participants.field("protocol", Keyword())
        participants.field("type", Keyword())
        m.field('participants', participants)
        # PI
        pi = Object(doc_class=PIIndexModel, include_in_all=True,
                    properties={
                        "technic": "integer",
                        "comportment": "integer",
                        "context": "integer",
                        "version": "integer",
                        "date_update": "date"
                    })
        m.field("pi", pi)
        m.field('privacy_features', Object(include_in_all=True))
        m.field('raw_msg_id', "keyword")
        m.field('subject', 'text', fields={
            "normalized": {"type": "text", "analyzer": "text_analyzer"}
        })
        m.field('tags', Keyword(multi=True))

        m.field('subject', 'text')
        m.field('tags', Keyword(multi=True))
        m.field('protocol', 'keyword')
        m.field('user_identities', Keyword(multi=True))

        return m