def load_file(self, df, _mean=['X', 'Y', 'LAT', 'LON', 'DEN', ], _sum=['HAB', 'CC', 'MAS', 'PDC', 'VV'], _first=['PAIS', 'REC', 'MUN', 'BOL']): # agrupamos por recinto _gr = df.groupby('ID_RECI') rec_df = _gr[_mean].mean() rec_df[_sum] = _gr[_sum].sum() rec_df[_first] = _gr[_first].first() rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC'] rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100 rec_df['cc'] = rec_df['CC'] / rec_df['VV'] * 100 rec_df['mas'] = rec_df['MAS'] / rec_df['VV'] * 100 rec_df['creemos'] = rec_df['CREEMOS'] / rec_df['VV'] * 100 rec_df['fpv'] = rec_df['FPV'] / rec_df['VV'] * 100 rec_df['pan_bol'] = rec_df['PAN_BOL'] / rec_df['VV'] * 100 rec_df['r'] = np.sqrt(rec_df['HAB']) / self.RATIO_CIRCLE_CARTO rec_df['r2'] = np.sqrt( rec_df['HAB']) / self.RATIO_CIRCLE_MAP + self.MAP_CIRCLE_SIZE_OFFSET res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values) rec_df['GX'] = res[0] rec_df['GY'] = res[1] rec_df = rec_df.sort_values('DEN', axis=0, ascending=True) # remove nans rec_df = rec_df.dropna(axis=0) assert rec_df.isna().sum().sum() == 0 return rec_df
'DEN', ] _sum = ['HAB', 'CC', 'MAS', 'PDC', 'VV'] _first = ['PAIS', 'REC', 'MUN', 'BOL'] #agrupamos por recinto _gr = df.groupby('ID_RECI') rec_df = _gr[_mean].mean() rec_df[_sum] = _gr[_sum].sum() rec_df[_first] = _gr[_first].first() rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC'] rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100 rec_df['r'] = np.sqrt(rec_df['HAB']) / 500 rec_df['r2'] = np.sqrt(rec_df['HAB']) / 7 + 5 res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values) rec_df['GX'] = res[0] rec_df['GY'] = res[1] needed_cols = [ 'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN' 'GX', 'GY' ] # %% # order by density rec_df = rec_df.sort_values('DEN', axis=0, ascending=True) # %% # remove nans rec_df = rec_df.dropna(axis=0)
def plot_carto_single(self, data, frente, palette, path=FILE_OUT, name_file="", low=0, high=100, show_plot=True): """ :param data: df loaded by data_load :param frente: string, name of "partido" lowercase: diff, mas, cc, creemos, fpv, pan_bol :param palette: ej: P_GRAD_CC :param name_file: default:test :param low: cmap low limit: default: -80 :param high: cmap high limit: defauilt: +80. :param path: file out :return: df """ da_col = ['HAB','PAIS','MUN','REC','X','Y','LAT','LON','x','y', 'r','r2','GX','GY' ] cart_init_val = self.CART_SLIDER_INIT # add slider self.process_data(cart_init_val, data) if frente == "diff": low = self.C_BAR_LOW high = self.C_BAR_HIGH frente = "d_mas_cc" f1 = 'mas_o_cc' f2 = 'ad_mas_cc' _p = 'mas' _p1 = 'cc' da_col.append(frente) da_col.append(f1) da_col.append(f2) da_col.append(_p) da_col.append(_p1) if frente == "d_mas_creemos": low = self.C_BAR_LOW high = self.C_BAR_HIGH f1 = 'mas_o_creemos' f2 = 'ad_mas_creemos' da_col.append(frente) da_col.append(f1) da_col.append(f2) da_col.append('mas') da_col.append('creemos') da_col.append(frente) cm = linear_cmap(frente, palette=palette, low=low, high=high) data = data[da_col] source_master = ColumnDataSource(data) source_red_map = ColumnDataSource({'gx': [], 'gy': []}) # la, lo = ebu.get_la_lo_bolivia() # source_bol = ColumnDataSource({'la': la, 'lo': lo}) # source_red_car = ColumnDataSource({'lo': [], 'la': []}) # JS CODE code_draw_red_map = """ const data = {'gx': [], 'gy': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++ ) { data['gx'].push(source_master.data.GX[indices[i]]) data['gy'].push(source_master.data.GY[indices[i]]) } source_red_map.data = data """ code_slider = """ var data = source.data; var f = cb_obj.value var x = data['x'] var y = data['y'] var Y = data['Y'] var X = data['X'] var lat = data['LAT'] var lon = data['LON'] for (var i = 0; i < x.length; i++) { y[i] = (1-f)*lat[i] + f*Y[i] x[i] = (1-f)*lon[i] + f*X[i] } source.change.emit(); """ # FIGURES curr_time = ebu.get_bolivian_time(-3) pw = self.FIG_WIDTH callback_red_map = CustomJS( args={'source_master': source_master, 'source_red_map': source_red_map, }, code=code_draw_red_map) hover_cart = bokeh.models.HoverTool( tooltips=self.TOOL_TIP_DIC[frente], callback=callback_red_map, # renderers = [red_scat_car] ) cart_fig = Figure(plot_width=pw, plot_height=pw, output_backend="webgl", ) cart_fig.background_fill_color = "grey" cart_fig.background_fill_alpha = .5 cart_fig.scatter('x', 'y', source=source_master, radius='r', color=cm) cart_fig.add_tools(hover_cart, ) title = "Última actualización: " + curr_time["datetime_val"].strftime( "%Y-%m-%d %H:%M") + "BOT" map_fig = Figure(plot_width=pw, plot_height=pw, x_axis_type='mercator', y_axis_type='mercator', output_backend="webgl", title=title, ) # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=) # cb_fig.toolbar.logo = None # cb_fig.toolbar_location = None # SCATTER # noinspection PyUnresolvedReferences # add tiles tile_provider = bokeh.tile_providers.get_provider( bokeh.tile_providers.Vendors.CARTODBPOSITRON) map_fig.add_tile(tile_provider) # scatter in map map_fig.scatter( 'GX', 'GY', source=source_master, size='r2', color=cm ) # todo if we wont use map then we nee to delete the source # cart_fig.line('lo', 'la', source=source_bol, color='black') # noinspection PyUnusedLocal red_scat_map = map_fig.circle_cross('gx', 'gy', source=source_red_map, fill_color=None, size=20, line_color="white", line_width=4 ) # noinspection PyUnusedLocal red_scat_map = map_fig.circle_cross('gx', 'gy', source=source_red_map, fill_color=None, size=20, line_color="red", line_width=1 ) # red_scat_car = cart_fig.scatter('lo', 'la', # source=source_red_car, color='green') # add a hover tool that sets the link data for a hovered circle # callbacks # code = code_merged) # callback_red_car = CustomJS( # args={'source_master': source_master, 'source_red_car': source_red_car}, # code=code_draw_red_car) # tools hover_map = bokeh.models.HoverTool( tooltips=self.TOOL_TIP_DIC[frente], # callback=callback_red_car, # renderers = [red_scat_map] ) map_fig.add_tools(hover_map, ) # slider callback_slider = CustomJS(args=dict(source=source_master), code=code_slider) slider = Slider(start=0, end=1, value=cart_init_val, step=.02, title="carto") slider.js_on_change('value', callback_slider) # COLOR BAR ml = {int(i): str(np.abs(i)) for i in np.arange(-80, 81, 20)} cb = bokeh.models.ColorBar( color_mapper=cm['transform'], # width=int(.9 * 450), width='auto', location=(0, 0), # title="DEN (N/km^2)", # title=(BAR_TITLE), # margin=0,padding=0, title_standoff=10, # ticker=bokeh.models.LogTicker(), orientation='horizontal', major_label_overrides=ml ) cart_fig.add_layout(cb, 'above') # cb.title_text_align = 'left' cart_fig.title.text = self.BAR_TITLE_DIC[frente] cart_fig.title.align = 'center' # layout = row(column(slider, cart_f),map_f) layout = bokeh.layouts.gridplot( [[slider, None], [cart_fig, map_fig]], sizing_mode='scale_width', merge_tools=False) layout.max_width = 1400 # layout = bokeh.layouts.column([slider, cart_fig]) cart_fig.x_range.start = self.CXS cart_fig.x_range.end = self.CXE cart_fig.y_range.start = self.CYS cart_fig.y_range.end = self.CYE _ll = ebu.lola_to_cart(lo=[self.MXS, self.MXE], la=[self.MYS, self.MYE]) map_fig.x_range.start = _ll[0][0] map_fig.x_range.end = _ll[0][1] map_fig.y_range.start = _ll[1][0] map_fig.y_range.end = _ll[1][1] cart_fig.xaxis.major_tick_line_color = None # turn off x-axis major ticks cart_fig.xaxis.minor_tick_line_color = None # turn off x-axis minor ticks cart_fig.yaxis.major_tick_line_color = None # turn off y-axis major ticks cart_fig.yaxis.minor_tick_line_color = None cart_fig.xaxis.major_label_text_font_size = '0pt' # turn off x-axis tick labels cart_fig.yaxis.major_label_text_font_size = '0pt' # turn off y-axis tick labels nam = 'z037_' + frente + '_' + name_file + '.html' nam_lat = 'z037_' + frente + '_' + 'latest' + '.html' nam1 = os.path.join(path, nam) nam2 = os.path.join(os.path.dirname(ebu.DIR), 'docs', 'graficas_htmls', nam_lat) # bokeh.plotting.output_file(nam2) if show_plot: bokeh.plotting.show(layout) bokeh.plotting.save(layout, nam1) bokeh.plotting.save(layout, nam2) return data
'z020_geopadron_recintos_2020_ALL_DEN.csv'), # encoding='ISO-8859-1' ).set_index('ID_RECI') df1 = pd.read_csv(os.path.join(ebu.DATA_PATH1_2020, 'z030_carto_xy.csv')).set_index('ID_RECI') rec_df = pd.merge(df0, df1, left_index=True, right_index=True, validate='1:1') # %% len(rec_df) # %% rec_df['r'] = np.sqrt(rec_df['HAB']) / 10 res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values) rec_df['GX'] = res[0] rec_df['GY'] = res[1] needed_cols = [ 'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN' 'GX', 'GY' ] # %% len(rec_df) # %% # order by density rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)
def densidad_carto(width=500): bokeh.plotting.reset_output() WIDTH = width CB_VALS = [0, 1, 2, 3] CB_LIMS = ebu.DEN_LIMS CB_LABS = {s: str(l) for s, l in enumerate(CB_LIMS[:])} FILE_OUT = os.path.join(ebu.DIR, 'htlml_1_intermedios/2020/z040_densidad2020.html') # bokeh.plotting.output_file(FILE_OUT) df0 = pd.read_csv( os.path.join(ebu.DATA_PATH1_2020, 'z020_geopadron_recintos_2020_ALL_DEN.csv'), # encoding='ISO-8859-1' ).set_index('ID_RECI') df1 = pd.read_csv(os.path.join(ebu.DATA_PATH1_2020, 'z030_carto_xy.csv')).set_index('ID_RECI') rec_df = pd.merge(df0, df1, left_index=True, right_index=True, validate='1:1') # %% len(rec_df) # %% rec_df['r'] = np.sqrt(rec_df['HAB']) / 10 res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values) rec_df['GX'] = res[0] rec_df['GY'] = res[1] needed_cols = [ 'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN' 'GX', 'GY' ] # %% len(rec_df) # %% # order by density rec_df = rec_df.sort_values('DEN', axis=0, ascending=True) # %% # remove nans # rec_df = rec_df.dropna(axis=0) # assert rec_df.isna().sum().sum() == 0 # %% len(rec_df) # %% # cut = pd.IntervalIndex.from_tuples([(0, 50), (50, 500), (500, 1500),(1500,3000),(3000,4000),(4000,7000)]) # %% # lab = ['B','M','X','A'] lab = CB_VALS lims = CB_LIMS NL = len(lims) c = pd.cut( rec_df['DEN'], lims, labels=lab, # retbins=True ) # %% rec_df['DEN_CUT'] = c.astype(int) # %% # %% [markdown] # ## Carto Densidad # %% [markdown] # ###### código # %% # output_file(os.path.join(ebu.DATA_FIG_OUT, "carto_map_mas_cc.html")) # %% # rec_df_spl = rec_df.sample(200).copy() rec_df_spl = rec_df.copy() # %% # DATA bokeh.plotting.output_notebook() cart_init_val = .0 data = rec_df_spl.copy() data['x'] = data['LON'] * (1 - cart_init_val) + data['X'] * cart_init_val data['y'] = data['LAT'] * (1 - cart_init_val) + data['Y'] * cart_init_val # %% # COLOR from bokeh.transform import linear_cmap from bokeh.transform import log_cmap # cm = linear_cmap('d_mas_cc', palette=ebu.P_DIF[::-1], low=-80, high=80) # cm = log_cmap('DEN', palette=bokeh.palettes.Viridis11, low=1, high=10000) cm = linear_cmap('DEN_CUT', palette=bokeh.palettes.Viridis[NL - 1], low=0, high=NL - 1) # %% # SOURCES source_master = ColumnDataSource(data) source_red_map = ColumnDataSource({'gx': [], 'gy': []}) la, lo = ebu.get_la_lo_bolivia() source_bol = ColumnDataSource({'la': la, 'lo': lo}) # source_red_car = ColumnDataSource({'lo': [], 'la': []}) # %% # JS CODE code_draw_red_map = """ const data = {'gx': [], 'gy': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++) { data['gx'].push(source_master.data.GX[indices[i]]) data['gy'].push(source_master.data.GY[indices[i]]) } source_red_map.data = data """ code_draw_red_car = """ const data = {'lo': [], 'la': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++) { data['lo'].push(source_master.data.x[indices[i]]) data['la'].push(source_master.data.y[indices[i]]) } source_red_car.data = data """ code_merged = """ const data_map = {'lo': [], 'la': []} const data_car = {'gx': [], 'gy': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++) { data_map['lo'].push(source_master.data.x[indices[i]]) data_map['la'].push(source_master.data.y[indices[i]]) data_car['gx'].push(source_master.data.GX[indices[i]]) data_car['gy'].push(source_master.data.GY[indices[i]]) } source_red_car.data = data_car source_red_map.data = data_map """ code_slider = """ var data = source.data; var f = cb_obj.value var x = data['x'] var y = data['y'] var Y = data['Y'] var X = data['X'] var lat = data['LAT'] var lon = data['LON'] for (var i = 0; i < x.length; i++) { y[i] = (1-f)*lat[i] + f*Y[i] x[i] = (1-f)*lon[i] + f*X[i] } source.change.emit(); """ # %% # FIGURES pw = WIDTH cart_fig = Figure(plot_width=pw + int(.2 * pw), plot_height=pw, output_backend="webgl") # map_fig = Figure(plot_width=pw, plot_height=pw, # x_axis_type='mercator', # y_axis_type='mercator', # output_backend="webgl", # ) # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=) # cb_fig.toolbar.logo = None # cb_fig.toolbar_location = None # %% # SCATTER # noinspection PyUnresolvedReferences # add tiles tile_provider = bokeh.tile_providers.get_provider( bokeh.tile_providers.Vendors.CARTODBPOSITRON) # map_fig.add_tile(tile_provider) # scatter in map # map_fig.scatter( # 'GX', 'GY', source=source_master, size='r', # color=cm # ) # cart_fig.line('lo', 'la', source=source_bol, color='black') cart_fig.scatter('x', 'y', source=source_master, size='r', color=cm) # red_scat_map = map_fig.scatter('gx', 'gy', # source=source_red_map, color='red', # line_color='green', # size=10 # ) # red_scat_car = cart_fig.scatter('lo', 'la', # source=source_red_car, color='green') # add a hover tool that sets the link data for a hovered circle # callbacks callback_red_map = CustomJS( args={ 'source_master': source_master, 'source_red_map': source_red_map, # 'source_red_car':source_red_car }, code=code_draw_red_map) # code = code_merged) # callback_red_car = CustomJS( # args={'source_master': source_master, 'source_red_car': source_red_car}, # code=code_draw_red_car) # tools ebu.TOOL_TIPS1 = [('Inscritos', '@HAB'), ('País', '@PAIS'), ('Municipio', '@MUN'), ('Recinto', '@REC'), ('Votantes/km^2', '@DEN{0}'), ('--------', '------') # ('PAIS', '@PAIS'), ] hover_cart = bokeh.models.HoverTool( tooltips=ebu.TOOL_TIPS1, callback=callback_red_map, # renderers = [red_scat_car] ) cart_fig.add_tools(hover_cart, ) hover_map = bokeh.models.HoverTool( tooltips=ebu.TOOL_TIPS1, # callback=callback_red_car, # renderers = [red_scat_map] ) # map_fig.add_tools(hover_map, ) # slider callback_slider = CustomJS(args=dict(source=source_master), code=code_slider) slider = Slider(start=0, end=1, value=cart_init_val, step=.01, title="carto") slider.js_on_change('value', callback_slider) # %% # COLOR BAR cb = bokeh.models.ColorBar( color_mapper=cm['transform'], width=30, location=(0, 0), title="Den. (V./km^2)", # margin=0,padding=0, title_standoff=10, # ticker=bokeh.models.LogTicker(), major_label_overrides=CB_LABS, ticker=bokeh.models.FixedTicker(ticks=list(CB_LABS.keys()))) cart_fig.add_layout(cb, 'left') # layout = row(column(slider, cart_f),map_f) # layout = bokeh.layouts.gridplot( # [[slider, None], [cart_fig, map_fig]] # , merge_tools=False # ) layout = bokeh.layouts.column([slider, cart_fig], # sizing_mode='scale_width' ) layout.width = width cart_fig.x_range.start = -80 cart_fig.x_range.end = -45 cart_fig.y_range.start = -30 cart_fig.y_range.end = 0 _ll = ebu.lola_to_cart(lo=[-80, -45], la=[-30, 0]) # map_fig.x_range.start = _ll[0][0] # map_fig.x_range.end = _ll[0][1] # map_fig.y_range.start = _ll[1][0] # map_fig.y_range.end = _ll[1][1] # %% [markdown] # ###### gráfica # %% [markdown] # En el mapa de abajo, cada punto corresponde un recinto electoral, su color está relacionado con la densidad de votantes, y su tamaño con la cantidad de votos. # Mueve el slider (carto) para ver la deformación. # %% # %% bokeh.plotting.show(layout)
_mean = ['X', 'Y', 'LAT', 'LON', 'DEN', ] _sum = ['HAB', 'CC', 'MAS', 'VV'] _first = ['PAIS', 'REC', 'MUN', 'BOL'] # agrupamos por recinto _gr = df2.groupby('ID_RECI') rec_df = _gr[_mean].mean() rec_df[_sum] = _gr[_sum].sum() rec_df[_first] = _gr[_first].first() rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC'] rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100 rec_df['r'] = np.sqrt(rec_df['HAB']) / RATIO_CIRCLE_CARTO rec_df['r2'] = np.sqrt(rec_df['HAB']) / RATIO_CIRCLE_MAP + MAP_CIRCLE_SIZE_OFFSET res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values) rec_df['GX'] = res[0] rec_df['GY'] = res[1] needed_cols = ['X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN' 'GX', 'GY'] # %% # order by density rec_df = rec_df.sort_values('DEN', axis=0, ascending=True) # %% # remove nans rec_df = rec_df.dropna(axis=0) assert rec_df.isna().sum().sum() == 0
def plot_carto_single(self, data, frente, palette, name_file="test.html", low=0, high=100): """ :param data: df loaded by data_load :param frente: string, name of "partido" lowercase: diff, mas, cc, creemos, fpv, panbol :param palette: ej: P_GRAD_CC :param name_file: default:test :param low: cmap low limit: default: -80 :param high: cmap high limit: defauilt: +80. :return: df """ if frente == "diff": low = self.C_BAR_LOW high = self.C_BAR_HIGH frente = "d_mas_cc" bokeh.plotting.output_file(self.FILE_OUT + '_' + frente + '_' + name_file) cart_init_val = self.CART_SLIDER_INIT # add slider data['x'] = data['LON'] * (1 - cart_init_val) + data['X'] * cart_init_val data['y'] = data['LAT'] * (1 - cart_init_val) + data['Y'] * cart_init_val cm = linear_cmap(frente, palette=palette, low=low, high=high) data['mas'] = data['MAS'] / data['VV'] * 100 data['cc'] = data['CC'] / data['VV'] * 100 data['pdc'] = data['PDC'] / data['VV'] * 100 #data['creemos'] = data['CREEMOS'] / data['VV'] * 100 #data['fpv'] = data['FPV'] / data['VV'] * 100 #data['panbol'] = data['PANBOL'] / data['VV'] * 100 data['ad_mas_cc'] = data['d_mas_cc'].abs() data['mas_o_cc'] = 'n' data.loc[data['d_mas_cc'] >= 0, 'mas_o_cc'] = 'MAS' data.loc[data['d_mas_cc'] < 0, 'mas_o_cc'] = 'CC' source_master = ColumnDataSource(data) source_red_map = ColumnDataSource({'gx': [], 'gy': []}) la, lo = ebu.get_la_lo_bolivia() source_bol = ColumnDataSource({'la': la, 'lo': lo}) # source_red_car = ColumnDataSource({'lo': [], 'la': []}) # JS CODE code_draw_red_map = """ const data = {'gx': [], 'gy': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++ ) { data['gx'].push(source_master.data.GX[indices[i]]) data['gy'].push(source_master.data.GY[indices[i]]) } source_red_map.data = data """ code_draw_red_car = """ const data = {'lo': [], 'la': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++) { data['lo'].push(source_master.data.x[indices[i]]) data['la'].push(source_master.data.y[indices[i]]) } source_red_car.data = data """ code_merged = """ const data_map = {'lo': [], 'la': []} const data_car = {'gx': [], 'gy': []} const indices = cb_data.index.indices for (var i = 0; i < indices.length; i++) { data_map['lo'].push(source_master.data.x[indices[i]]) data_map['la'].push(source_master.data.y[indices[i]]) data_car['gx'].push(source_master.data.GX[indices[i]]) data_car['gy'].push(source_master.data.GY[indices[i]]) } source_red_car.data = data_car source_red_map.data = data_map """ code_slider = """ var data = source.data; var f = cb_obj.value var x = data['x'] var y = data['y'] var Y = data['Y'] var X = data['X'] var lat = data['LAT'] var lon = data['LON'] for (var i = 0; i < x.length; i++) { y[i] = (1-f)*lat[i] + f*Y[i] x[i] = (1-f)*lon[i] + f*X[i] } source.change.emit(); """ # FIGURES pw = self.FIG_WIDTH cart_fig = Figure(plot_width=pw, plot_height=pw, output_backend="webgl") map_fig = Figure( plot_width=pw, plot_height=pw, x_axis_type='mercator', y_axis_type='mercator', output_backend="webgl", ) cart_fig.background_fill_color = "grey" cart_fig.background_fill_alpha = .5 # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=) # cb_fig.toolbar.logo = None # cb_fig.toolbar_location = None # SCATTER # noinspection PyUnresolvedReferences # add tiles tile_provider = bokeh.tile_providers.get_provider( bokeh.tile_providers.Vendors.CARTODBPOSITRON) map_fig.add_tile(tile_provider) # scatter in map map_fig.scatter('GX', 'GY', source=source_master, size='r2', color=cm) # todo if we wont use map then we nee to delete the source # cart_fig.line('lo', 'la', source=source_bol, color='black') cart_fig.scatter('x', 'y', source=source_master, radius='r', color=cm) red_scat_map = map_fig.circle_cross( 'gx', 'gy', source=source_red_map, # color='red', fill_color=None, # line_color='green', size=20, line_color="white", line_width=4) red_scat_map = map_fig.circle_cross( 'gx', 'gy', source=source_red_map, # color='red', fill_color=None, # line_color='green', size=20, line_color="red", line_width=1) # red_scat_car = cart_fig.scatter('lo', 'la', # source=source_red_car, color='green') # add a hover tool that sets the link data for a hovered circle # callbacks callback_red_map = CustomJS( args={ 'source_master': source_master, 'source_red_map': source_red_map, # 'source_red_car':source_red_car }, code=code_draw_red_map) # code = code_merged) # callback_red_car = CustomJS( # args={'source_master': source_master, 'source_red_car': source_red_car}, # code=code_draw_red_car) # tools hover_cart = bokeh.models.HoverTool( tooltips=self.TOOL_TIP_DIC[frente], callback=callback_red_map, # renderers = [red_scat_car] ) cart_fig.add_tools(hover_cart, ) hover_map = bokeh.models.HoverTool( tooltips=self.TOOL_TIP_DIC[frente], # callback=callback_red_car, # renderers = [red_scat_map] ) map_fig.add_tools(hover_map, ) # slider callback_slider = CustomJS(args=dict(source=source_master), code=code_slider) slider = Slider(start=0, end=1, value=cart_init_val, step=.02, title="carto") slider.js_on_change('value', callback_slider) # COLOR BAR ml = {int(i): str(np.abs(i)) for i in np.arange(-80, 81, 20)} cb = bokeh.models.ColorBar( color_mapper=cm['transform'], width=int(.9 * self.FIG_WIDTH), location=(0, 0), # title="DEN (N/km^2)", # title=(BAR_TITLE), # margin=0,padding=0, title_standoff=10, # ticker=bokeh.models.LogTicker(), orientation='horizontal', major_label_overrides=ml) cart_fig.add_layout(cb, 'above') # cb.title_text_align = 'left' cart_fig.title.text = self.BAR_TITLE_DIC[frente] cart_fig.title.align = 'center' # layout = row(column(slider, cart_f),map_f) layout = bokeh.layouts.gridplot([[slider, None], [cart_fig, map_fig]], merge_tools=False) # layout = bokeh.layouts.column([slider, cart_fig]) cart_fig.x_range.start = self.CXS cart_fig.x_range.end = self.CXE cart_fig.y_range.start = self.CYS cart_fig.y_range.end = self.CYE _ll = ebu.lola_to_cart(lo=[self.MXS, self.MXE], la=[self.MYS, self.MYE]) map_fig.x_range.start = _ll[0][0] map_fig.x_range.end = _ll[0][1] map_fig.y_range.start = _ll[1][0] map_fig.y_range.end = _ll[1][1] cart_fig.xaxis.major_tick_line_color = None # turn off x-axis major ticks cart_fig.xaxis.minor_tick_line_color = None # turn off x-axis minor ticks cart_fig.yaxis.major_tick_line_color = None # turn off y-axis major ticks cart_fig.yaxis.minor_tick_line_color = None cart_fig.xaxis.major_label_text_font_size = '0pt' # turn off x-axis tick labels cart_fig.yaxis.major_label_text_font_size = '0pt' # turn off y-axis tick labels bokeh.plotting.show(layout) return data