Example #1
0
    def load_file(self, df, _mean=['X', 'Y', 'LAT', 'LON', 'DEN', ],
                  _sum=['HAB', 'CC', 'MAS', 'PDC', 'VV'],
                  _first=['PAIS', 'REC', 'MUN', 'BOL']):
        # agrupamos por recinto
        _gr = df.groupby('ID_RECI')
        rec_df = _gr[_mean].mean()
        rec_df[_sum] = _gr[_sum].sum()
        rec_df[_first] = _gr[_first].first()

        rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC']
        rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100
        rec_df['cc'] = rec_df['CC'] / rec_df['VV'] * 100
        rec_df['mas'] = rec_df['MAS'] / rec_df['VV'] * 100
        rec_df['creemos'] = rec_df['CREEMOS'] / rec_df['VV'] * 100
        rec_df['fpv'] = rec_df['FPV'] / rec_df['VV'] * 100
        rec_df['pan_bol'] = rec_df['PAN_BOL'] / rec_df['VV'] * 100

        rec_df['r'] = np.sqrt(rec_df['HAB']) / self.RATIO_CIRCLE_CARTO
        rec_df['r2'] = np.sqrt(
            rec_df['HAB']) / self.RATIO_CIRCLE_MAP + self.MAP_CIRCLE_SIZE_OFFSET

        res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values)
        rec_df['GX'] = res[0]
        rec_df['GY'] = res[1]

        rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)

        # remove nans
        rec_df = rec_df.dropna(axis=0)
        assert rec_df.isna().sum().sum() == 0
        return rec_df
    'DEN',
]
_sum = ['HAB', 'CC', 'MAS', 'PDC', 'VV']
_first = ['PAIS', 'REC', 'MUN', 'BOL']
#agrupamos por recinto
_gr = df.groupby('ID_RECI')
rec_df = _gr[_mean].mean()
rec_df[_sum] = _gr[_sum].sum()
rec_df[_first] = _gr[_first].first()

rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC']
rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100
rec_df['r'] = np.sqrt(rec_df['HAB']) / 500
rec_df['r2'] = np.sqrt(rec_df['HAB']) / 7 + 5

res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values)
rec_df['GX'] = res[0]
rec_df['GY'] = res[1]

needed_cols = [
    'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN'
    'GX', 'GY'
]

# %%
# order by density
rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)

# %%
# remove nans
rec_df = rec_df.dropna(axis=0)
Example #3
0
    def plot_carto_single(self, data, frente, palette, path=FILE_OUT,
                          name_file="", low=0, high=100, show_plot=True):
        """

        :param data: df loaded by data_load
        :param frente: string, name of "partido" lowercase: diff, mas, cc, creemos, fpv, pan_bol
        :param palette: ej: P_GRAD_CC
        :param name_file: default:test
        :param low: cmap low limit: default: -80
        :param high: cmap high limit: defauilt: +80.
        :param path: file out
        :return: df
        """
        da_col = ['HAB','PAIS','MUN','REC','X','Y','LAT','LON','x','y',
                  'r','r2','GX','GY'
                  ]

        cart_init_val = self.CART_SLIDER_INIT  # add slider
        self.process_data(cart_init_val, data)


        if frente == "diff":
            low = self.C_BAR_LOW
            high = self.C_BAR_HIGH
            frente = "d_mas_cc"
            f1 = 'mas_o_cc'
            f2 = 'ad_mas_cc'
            _p = 'mas'
            _p1 = 'cc'
            da_col.append(frente)
            da_col.append(f1)
            da_col.append(f2)
            da_col.append(_p)
            da_col.append(_p1)
        if frente == "d_mas_creemos":
            low = self.C_BAR_LOW
            high = self.C_BAR_HIGH
            f1 = 'mas_o_creemos'
            f2 = 'ad_mas_creemos'
            da_col.append(frente)
            da_col.append(f1)
            da_col.append(f2)
            da_col.append('mas')
            da_col.append('creemos')

        da_col.append(frente)



        cm = linear_cmap(frente, palette=palette, low=low, high=high)



        data = data[da_col]
        source_master = ColumnDataSource(data)
        source_red_map = ColumnDataSource({'gx': [], 'gy': []})
        # la, lo = ebu.get_la_lo_bolivia()
        # source_bol = ColumnDataSource({'la': la, 'lo': lo})
        # source_red_car = ColumnDataSource({'lo': [], 'la': []})

        # JS CODE
        code_draw_red_map = """
        const data = {'gx': [], 'gy': []}
        const indices = cb_data.index.indices
        for (var i = 0; i < indices.length; i++ ) {
                data['gx'].push(source_master.data.GX[indices[i]])
                data['gy'].push(source_master.data.GY[indices[i]])
        }
        source_red_map.data = data
        """

        code_slider = """
            var data = source.data;
            var f = cb_obj.value
            var x = data['x']
            var y = data['y']
            var Y = data['Y']
            var X = data['X']
            var lat = data['LAT']
            var lon = data['LON']
            for (var i = 0; i < x.length; i++) {
                y[i] = (1-f)*lat[i] + f*Y[i]
                x[i] = (1-f)*lon[i] + f*X[i]
            }
            source.change.emit();
        """

        # FIGURES
        curr_time = ebu.get_bolivian_time(-3)

        pw = self.FIG_WIDTH

        callback_red_map = CustomJS(
            args={'source_master': source_master,
                  'source_red_map': source_red_map, },
            code=code_draw_red_map)

        hover_cart = bokeh.models.HoverTool(
            tooltips=self.TOOL_TIP_DIC[frente],
            callback=callback_red_map,
            # renderers = [red_scat_car]

        )

        cart_fig = Figure(plot_width=pw, plot_height=pw,
                          output_backend="webgl", )
        cart_fig.background_fill_color = "grey"
        cart_fig.background_fill_alpha = .5
        cart_fig.scatter('x', 'y', source=source_master, radius='r', color=cm)
        cart_fig.add_tools(hover_cart, )

        title = "Última actualización: " + curr_time["datetime_val"].strftime(
            "%Y-%m-%d %H:%M") + "BOT"


        map_fig = Figure(plot_width=pw, plot_height=pw,
                         x_axis_type='mercator',
                         y_axis_type='mercator',
                         output_backend="webgl",
                         title=title,
                         )

        # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=)
        # cb_fig.toolbar.logo = None
        # cb_fig.toolbar_location = None

        # SCATTER
        # noinspection PyUnresolvedReferences
        # add tiles
        tile_provider = bokeh.tile_providers.get_provider(
            bokeh.tile_providers.Vendors.CARTODBPOSITRON)
        map_fig.add_tile(tile_provider)

        # scatter in map
        map_fig.scatter(
            'GX', 'GY', source=source_master, size='r2',
            color=cm
        )

        # todo if we wont use map then we nee to delete the source
        # cart_fig.line('lo', 'la', source=source_bol, color='black')

        # noinspection PyUnusedLocal
        red_scat_map = map_fig.circle_cross('gx', 'gy',
                                            source=source_red_map,
                                            fill_color=None,
                                            size=20,
                                            line_color="white",
                                            line_width=4
                                            )

        # noinspection PyUnusedLocal
        red_scat_map = map_fig.circle_cross('gx', 'gy',
                                            source=source_red_map,
                                            fill_color=None,
                                            size=20,
                                            line_color="red",
                                            line_width=1
                                            )
        # red_scat_car = cart_fig.scatter('lo', 'la',
        # source=source_red_car, color='green')

        # add a hover tool that sets the link data for a hovered circle

        # callbacks

        # code = code_merged)

        # callback_red_car = CustomJS(
        # args={'source_master': source_master, 'source_red_car': source_red_car},
        # code=code_draw_red_car)

        # tools

        hover_map = bokeh.models.HoverTool(
            tooltips=self.TOOL_TIP_DIC[frente],
            # callback=callback_red_car,
            # renderers = [red_scat_map]
        )
        map_fig.add_tools(hover_map, )

        # slider
        callback_slider = CustomJS(args=dict(source=source_master),
                                   code=code_slider)

        slider = Slider(start=0, end=1, value=cart_init_val, step=.02,
                        title="carto")
        slider.js_on_change('value', callback_slider)

        # COLOR BAR
        ml = {int(i): str(np.abs(i)) for i in np.arange(-80, 81, 20)}
        cb = bokeh.models.ColorBar(
            color_mapper=cm['transform'],
            # width=int(.9 * 450),
            width='auto',
            location=(0, 0),
            #     title="DEN (N/km^2)",
            # title=(BAR_TITLE),
            # margin=0,padding=0,
            title_standoff=10,
            # ticker=bokeh.models.LogTicker(),
            orientation='horizontal',
            major_label_overrides=ml

        )

        cart_fig.add_layout(cb, 'above')
        # cb.title_text_align = 'left'
        cart_fig.title.text = self.BAR_TITLE_DIC[frente]
        cart_fig.title.align = 'center'

        # layout = row(column(slider, cart_f),map_f)
        layout = bokeh.layouts.gridplot(
            [[slider, None], [cart_fig, map_fig]], sizing_mode='scale_width',
            merge_tools=False)
        layout.max_width = 1400
        # layout = bokeh.layouts.column([slider, cart_fig])

        cart_fig.x_range.start = self.CXS
        cart_fig.x_range.end = self.CXE
        cart_fig.y_range.start = self.CYS
        cart_fig.y_range.end = self.CYE

        _ll = ebu.lola_to_cart(lo=[self.MXS, self.MXE], la=[self.MYS, self.MYE])
        map_fig.x_range.start = _ll[0][0]
        map_fig.x_range.end = _ll[0][1]
        map_fig.y_range.start = _ll[1][0]
        map_fig.y_range.end = _ll[1][1]

        cart_fig.xaxis.major_tick_line_color = None
        # turn off x-axis major ticks
        cart_fig.xaxis.minor_tick_line_color = None
        # turn off x-axis minor ticks
        cart_fig.yaxis.major_tick_line_color = None
        # turn off y-axis major ticks
        cart_fig.yaxis.minor_tick_line_color = None
        cart_fig.xaxis.major_label_text_font_size = '0pt'
        # turn off x-axis tick labels
        cart_fig.yaxis.major_label_text_font_size = '0pt'
        # turn off y-axis tick labels
        nam = 'z037_' + frente + '_' + name_file + '.html'
        nam_lat = 'z037_' + frente + '_' + 'latest' + '.html'
        nam1 = os.path.join(path, nam)

        nam2 = os.path.join(os.path.dirname(ebu.DIR), 'docs',
                            'graficas_htmls',
                            nam_lat)
        # bokeh.plotting.output_file(nam2)
        if show_plot:

            bokeh.plotting.show(layout)

        bokeh.plotting.save(layout, nam1)
        bokeh.plotting.save(layout, nam2)

        return data
Example #4
0
                 'z020_geopadron_recintos_2020_ALL_DEN.csv'),
    # encoding='ISO-8859-1'
).set_index('ID_RECI')

df1 = pd.read_csv(os.path.join(ebu.DATA_PATH1_2020,
                               'z030_carto_xy.csv')).set_index('ID_RECI')

rec_df = pd.merge(df0, df1, left_index=True, right_index=True, validate='1:1')

# %%
len(rec_df)

# %%
rec_df['r'] = np.sqrt(rec_df['HAB']) / 10

res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values)
rec_df['GX'] = res[0]
rec_df['GY'] = res[1]

needed_cols = [
    'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN'
    'GX', 'GY'
]

# %%
len(rec_df)

# %%
# order by density
rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)
Example #5
0
def densidad_carto(width=500):
    bokeh.plotting.reset_output()

    WIDTH = width
    CB_VALS = [0, 1, 2, 3]
    CB_LIMS = ebu.DEN_LIMS
    CB_LABS = {s: str(l) for s, l in enumerate(CB_LIMS[:])}
    FILE_OUT = os.path.join(ebu.DIR,
                            'htlml_1_intermedios/2020/z040_densidad2020.html')
    # bokeh.plotting.output_file(FILE_OUT)
    df0 = pd.read_csv(
        os.path.join(ebu.DATA_PATH1_2020,
                     'z020_geopadron_recintos_2020_ALL_DEN.csv'),
        # encoding='ISO-8859-1'
    ).set_index('ID_RECI')
    df1 = pd.read_csv(os.path.join(ebu.DATA_PATH1_2020,
                                   'z030_carto_xy.csv')).set_index('ID_RECI')
    rec_df = pd.merge(df0,
                      df1,
                      left_index=True,
                      right_index=True,
                      validate='1:1')
    # %%
    len(rec_df)
    # %%
    rec_df['r'] = np.sqrt(rec_df['HAB']) / 10
    res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values)
    rec_df['GX'] = res[0]
    rec_df['GY'] = res[1]
    needed_cols = [
        'X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN'
        'GX', 'GY'
    ]
    # %%
    len(rec_df)
    # %%
    # order by density
    rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)
    # %%
    # remove nans
    # rec_df = rec_df.dropna(axis=0)
    # assert rec_df.isna().sum().sum() == 0
    # %%
    len(rec_df)
    # %%
    # cut = pd.IntervalIndex.from_tuples([(0, 50), (50, 500), (500, 1500),(1500,3000),(3000,4000),(4000,7000)])
    # %%
    # lab = ['B','M','X','A']
    lab = CB_VALS
    lims = CB_LIMS
    NL = len(lims)
    c = pd.cut(
        rec_df['DEN'],
        lims,
        labels=lab,
        #              retbins=True
    )
    # %%
    rec_df['DEN_CUT'] = c.astype(int)
    # %%
    # %% [markdown]
    # ## Carto Densidad
    # %% [markdown]
    # ###### código
    # %%
    # output_file(os.path.join(ebu.DATA_FIG_OUT, "carto_map_mas_cc.html"))
    # %%
    # rec_df_spl = rec_df.sample(200).copy()
    rec_df_spl = rec_df.copy()
    # %%
    # DATA
    bokeh.plotting.output_notebook()
    cart_init_val = .0
    data = rec_df_spl.copy()
    data['x'] = data['LON'] * (1 - cart_init_val) + data['X'] * cart_init_val
    data['y'] = data['LAT'] * (1 - cart_init_val) + data['Y'] * cart_init_val
    # %%
    # COLOR
    from bokeh.transform import linear_cmap
    from bokeh.transform import log_cmap
    # cm = linear_cmap('d_mas_cc', palette=ebu.P_DIF[::-1], low=-80, high=80)
    # cm = log_cmap('DEN', palette=bokeh.palettes.Viridis11, low=1, high=10000)
    cm = linear_cmap('DEN_CUT',
                     palette=bokeh.palettes.Viridis[NL - 1],
                     low=0,
                     high=NL - 1)
    # %%
    # SOURCES
    source_master = ColumnDataSource(data)
    source_red_map = ColumnDataSource({'gx': [], 'gy': []})
    la, lo = ebu.get_la_lo_bolivia()
    source_bol = ColumnDataSource({'la': la, 'lo': lo})
    # source_red_car = ColumnDataSource({'lo': [], 'la': []})
    # %%
    # JS CODE
    code_draw_red_map = """
const data = {'gx': [], 'gy': []}
const indices = cb_data.index.indices
for (var i = 0; i < indices.length; i++) {
        data['gx'].push(source_master.data.GX[indices[i]])
        data['gy'].push(source_master.data.GY[indices[i]])
}
source_red_map.data = data
"""
    code_draw_red_car = """
const data = {'lo': [], 'la': []}
const indices = cb_data.index.indices
for (var i = 0; i < indices.length; i++) {
        data['lo'].push(source_master.data.x[indices[i]])
        data['la'].push(source_master.data.y[indices[i]])
}
source_red_car.data = data
"""
    code_merged = """
const data_map = {'lo': [], 'la': []}
const data_car = {'gx': [], 'gy': []}
const indices = cb_data.index.indices
for (var i = 0; i < indices.length; i++) {
        data_map['lo'].push(source_master.data.x[indices[i]])
        data_map['la'].push(source_master.data.y[indices[i]])
        data_car['gx'].push(source_master.data.GX[indices[i]])
        data_car['gy'].push(source_master.data.GY[indices[i]])
}
source_red_car.data = data_car
source_red_map.data = data_map
"""
    code_slider = """
    var data = source.data;
    var f = cb_obj.value
    var x = data['x']
    var y = data['y']
    var Y = data['Y']
    var X = data['X']
    var lat = data['LAT']
    var lon = data['LON']
    for (var i = 0; i < x.length; i++) {
        y[i] = (1-f)*lat[i] + f*Y[i]
        x[i] = (1-f)*lon[i] + f*X[i]
    }
    source.change.emit();
"""
    # %%
    # FIGURES
    pw = WIDTH
    cart_fig = Figure(plot_width=pw + int(.2 * pw),
                      plot_height=pw,
                      output_backend="webgl")
    # map_fig = Figure(plot_width=pw, plot_height=pw,
    #                  x_axis_type='mercator',
    #                  y_axis_type='mercator',
    #                  output_backend="webgl",
    #                  )
    # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=)
    # cb_fig.toolbar.logo = None
    # cb_fig.toolbar_location = None
    # %%
    # SCATTER
    # noinspection PyUnresolvedReferences
    # add tiles
    tile_provider = bokeh.tile_providers.get_provider(
        bokeh.tile_providers.Vendors.CARTODBPOSITRON)
    # map_fig.add_tile(tile_provider)
    # scatter in map
    # map_fig.scatter(
    #     'GX', 'GY', source=source_master, size='r',
    #     color=cm
    # )
    # cart_fig.line('lo', 'la', source=source_bol, color='black')
    cart_fig.scatter('x', 'y', source=source_master, size='r', color=cm)
    # red_scat_map = map_fig.scatter('gx', 'gy',
    #                                source=source_red_map, color='red',
    #                                line_color='green',
    #                                size=10
    #                                )
    # red_scat_car = cart_fig.scatter('lo', 'la',
    # source=source_red_car, color='green')
    # add a hover tool that sets the link data for a hovered circle
    # callbacks
    callback_red_map = CustomJS(
        args={
            'source_master': source_master,
            'source_red_map': source_red_map,
            # 'source_red_car':source_red_car
        },
        code=code_draw_red_map)
    # code = code_merged)
    # callback_red_car = CustomJS(
    #     args={'source_master': source_master, 'source_red_car': source_red_car},
    #     code=code_draw_red_car)
    # tools
    ebu.TOOL_TIPS1 = [('Inscritos', '@HAB'), ('País', '@PAIS'),
                      ('Municipio', '@MUN'), ('Recinto', '@REC'),
                      ('Votantes/km^2', '@DEN{0}'), ('--------', '------')
                      # ('PAIS', '@PAIS'),
                      ]
    hover_cart = bokeh.models.HoverTool(
        tooltips=ebu.TOOL_TIPS1,
        callback=callback_red_map,
        # renderers = [red_scat_car]
    )
    cart_fig.add_tools(hover_cart, )
    hover_map = bokeh.models.HoverTool(
        tooltips=ebu.TOOL_TIPS1,
        # callback=callback_red_car,
        # renderers = [red_scat_map]
    )
    # map_fig.add_tools(hover_map, )
    # slider
    callback_slider = CustomJS(args=dict(source=source_master),
                               code=code_slider)
    slider = Slider(start=0,
                    end=1,
                    value=cart_init_val,
                    step=.01,
                    title="carto")
    slider.js_on_change('value', callback_slider)
    # %%
    # COLOR BAR
    cb = bokeh.models.ColorBar(
        color_mapper=cm['transform'],
        width=30,
        location=(0, 0),
        title="Den. (V./km^2)",
        # margin=0,padding=0,
        title_standoff=10,
        #     ticker=bokeh.models.LogTicker(),
        major_label_overrides=CB_LABS,
        ticker=bokeh.models.FixedTicker(ticks=list(CB_LABS.keys())))
    cart_fig.add_layout(cb, 'left')
    # layout = row(column(slider, cart_f),map_f)
    # layout = bokeh.layouts.gridplot(
    #     [[slider, None], [cart_fig, map_fig]]
    #     , merge_tools=False
    # )
    layout = bokeh.layouts.column([slider, cart_fig],
                                  # sizing_mode='scale_width'
                                  )
    layout.width = width
    cart_fig.x_range.start = -80
    cart_fig.x_range.end = -45
    cart_fig.y_range.start = -30
    cart_fig.y_range.end = 0
    _ll = ebu.lola_to_cart(lo=[-80, -45], la=[-30, 0])
    # map_fig.x_range.start = _ll[0][0]
    # map_fig.x_range.end = _ll[0][1]
    # map_fig.y_range.start = _ll[1][0]
    # map_fig.y_range.end = _ll[1][1]
    # %% [markdown]
    # ###### gráfica
    # %% [markdown]
    # En el mapa de abajo, cada punto corresponde un recinto electoral, su color está relacionado con la densidad de votantes, y su tamaño con la cantidad de votos.
    # Mueve el slider (carto) para ver la deformación.
    # %%
    # %%
    bokeh.plotting.show(layout)
Example #6
0
_mean = ['X', 'Y', 'LAT', 'LON', 'DEN', ]
_sum = ['HAB', 'CC', 'MAS', 'VV']
_first = ['PAIS', 'REC', 'MUN', 'BOL']
# agrupamos por recinto
_gr = df2.groupby('ID_RECI')
rec_df = _gr[_mean].mean()
rec_df[_sum] = _gr[_sum].sum()
rec_df[_first] = _gr[_first].first()

rec_df['D_MAS_CC'] = rec_df['MAS'] - rec_df['CC']
rec_df['d_mas_cc'] = rec_df['D_MAS_CC'] / rec_df['VV'] * 100
rec_df['r'] = np.sqrt(rec_df['HAB']) / RATIO_CIRCLE_CARTO
rec_df['r2'] = np.sqrt(rec_df['HAB']) / RATIO_CIRCLE_MAP + MAP_CIRCLE_SIZE_OFFSET


res = ebu.lola_to_cart(rec_df['LON'].values, rec_df['LAT'].values)
rec_df['GX'] = res[0]
rec_df['GY'] = res[1]

needed_cols = ['X', 'Y', 'd_mas_cc', 'r', 'LAT', 'LON', 'PAIS', 'REC', 'MUN', 'DEN'
                                                                              'GX', 'GY']

# %%
# order by density
rec_df = rec_df.sort_values('DEN', axis=0, ascending=True)

# %%
# remove nans
rec_df = rec_df.dropna(axis=0)
assert rec_df.isna().sum().sum() == 0
Example #7
0
    def plot_carto_single(self,
                          data,
                          frente,
                          palette,
                          name_file="test.html",
                          low=0,
                          high=100):
        """

        :param data: df loaded by data_load
        :param frente: string, name of "partido" lowercase: diff, mas, cc, creemos, fpv, panbol
        :param palette: ej: P_GRAD_CC
        :param name_file: default:test
        :param low: cmap low limit: default: -80
        :param high: cmap high limit: defauilt: +80.
        :return: df
        """
        if frente == "diff":
            low = self.C_BAR_LOW
            high = self.C_BAR_HIGH
            frente = "d_mas_cc"

        bokeh.plotting.output_file(self.FILE_OUT + '_' + frente + '_' +
                                   name_file)
        cart_init_val = self.CART_SLIDER_INIT  # add slider
        data['x'] = data['LON'] * (1 -
                                   cart_init_val) + data['X'] * cart_init_val
        data['y'] = data['LAT'] * (1 -
                                   cart_init_val) + data['Y'] * cart_init_val
        cm = linear_cmap(frente, palette=palette, low=low, high=high)

        data['mas'] = data['MAS'] / data['VV'] * 100
        data['cc'] = data['CC'] / data['VV'] * 100
        data['pdc'] = data['PDC'] / data['VV'] * 100
        #data['creemos'] = data['CREEMOS'] / data['VV'] * 100
        #data['fpv'] = data['FPV'] / data['VV'] * 100
        #data['panbol'] = data['PANBOL'] / data['VV'] * 100
        data['ad_mas_cc'] = data['d_mas_cc'].abs()
        data['mas_o_cc'] = 'n'
        data.loc[data['d_mas_cc'] >= 0, 'mas_o_cc'] = 'MAS'
        data.loc[data['d_mas_cc'] < 0, 'mas_o_cc'] = 'CC'

        source_master = ColumnDataSource(data)
        source_red_map = ColumnDataSource({'gx': [], 'gy': []})
        la, lo = ebu.get_la_lo_bolivia()
        source_bol = ColumnDataSource({'la': la, 'lo': lo})
        # source_red_car = ColumnDataSource({'lo': [], 'la': []})

        # JS CODE
        code_draw_red_map = """
        const data = {'gx': [], 'gy': []}
        const indices = cb_data.index.indices
        for (var i = 0; i < indices.length; i++ ) {
                data['gx'].push(source_master.data.GX[indices[i]])
                data['gy'].push(source_master.data.GY[indices[i]])
        }
        source_red_map.data = data
        """

        code_draw_red_car = """
        const data = {'lo': [], 'la': []}
        const indices = cb_data.index.indices
        for (var i = 0; i < indices.length; i++) {
                data['lo'].push(source_master.data.x[indices[i]])
                data['la'].push(source_master.data.y[indices[i]])
        }
        source_red_car.data = data
        """

        code_merged = """
        const data_map = {'lo': [], 'la': []}
        const data_car = {'gx': [], 'gy': []}
        const indices = cb_data.index.indices
        for (var i = 0; i < indices.length; i++) {
                data_map['lo'].push(source_master.data.x[indices[i]])
                data_map['la'].push(source_master.data.y[indices[i]])
                data_car['gx'].push(source_master.data.GX[indices[i]])
                data_car['gy'].push(source_master.data.GY[indices[i]])
        }
        source_red_car.data = data_car
        source_red_map.data = data_map
        """

        code_slider = """
            var data = source.data;
            var f = cb_obj.value
            var x = data['x']
            var y = data['y']
            var Y = data['Y']
            var X = data['X']
            var lat = data['LAT']
            var lon = data['LON']
            for (var i = 0; i < x.length; i++) {
                y[i] = (1-f)*lat[i] + f*Y[i]
                x[i] = (1-f)*lon[i] + f*X[i]
            }
            source.change.emit();
        """

        # FIGURES
        pw = self.FIG_WIDTH
        cart_fig = Figure(plot_width=pw,
                          plot_height=pw,
                          output_backend="webgl")
        map_fig = Figure(
            plot_width=pw,
            plot_height=pw,
            x_axis_type='mercator',
            y_axis_type='mercator',
            output_backend="webgl",
        )
        cart_fig.background_fill_color = "grey"
        cart_fig.background_fill_alpha = .5
        # cb_fig = bokeh.plotting.Figure(plot_height=pw,plot_width=)
        # cb_fig.toolbar.logo = None
        # cb_fig.toolbar_location = None

        # SCATTER
        # noinspection PyUnresolvedReferences
        # add tiles
        tile_provider = bokeh.tile_providers.get_provider(
            bokeh.tile_providers.Vendors.CARTODBPOSITRON)
        map_fig.add_tile(tile_provider)

        # scatter in map
        map_fig.scatter('GX', 'GY', source=source_master, size='r2', color=cm)

        # todo if we wont use map then we nee to delete the source
        # cart_fig.line('lo', 'la', source=source_bol, color='black')
        cart_fig.scatter('x', 'y', source=source_master, radius='r', color=cm)

        red_scat_map = map_fig.circle_cross(
            'gx',
            'gy',
            source=source_red_map,
            #                                color='red',
            fill_color=None,
            #                                line_color='green',
            size=20,
            line_color="white",
            line_width=4)

        red_scat_map = map_fig.circle_cross(
            'gx',
            'gy',
            source=source_red_map,
            #                                color='red',
            fill_color=None,
            #                                line_color='green',
            size=20,
            line_color="red",
            line_width=1)
        # red_scat_car = cart_fig.scatter('lo', 'la',
        # source=source_red_car, color='green')

        # add a hover tool that sets the link data for a hovered circle

        # callbacks
        callback_red_map = CustomJS(
            args={
                'source_master': source_master,
                'source_red_map': source_red_map,
                # 'source_red_car':source_red_car
            },
            code=code_draw_red_map)
        # code = code_merged)

        # callback_red_car = CustomJS(
        #     args={'source_master': source_master, 'source_red_car': source_red_car},
        #     code=code_draw_red_car)

        # tools

        hover_cart = bokeh.models.HoverTool(
            tooltips=self.TOOL_TIP_DIC[frente],
            callback=callback_red_map,
            # renderers = [red_scat_car]
        )
        cart_fig.add_tools(hover_cart, )

        hover_map = bokeh.models.HoverTool(
            tooltips=self.TOOL_TIP_DIC[frente],
            # callback=callback_red_car,
            # renderers = [red_scat_map]
        )
        map_fig.add_tools(hover_map, )

        # slider
        callback_slider = CustomJS(args=dict(source=source_master),
                                   code=code_slider)

        slider = Slider(start=0,
                        end=1,
                        value=cart_init_val,
                        step=.02,
                        title="carto")
        slider.js_on_change('value', callback_slider)

        # COLOR BAR
        ml = {int(i): str(np.abs(i)) for i in np.arange(-80, 81, 20)}
        cb = bokeh.models.ColorBar(
            color_mapper=cm['transform'],
            width=int(.9 * self.FIG_WIDTH),
            location=(0, 0),
            #     title="DEN (N/km^2)",
            # title=(BAR_TITLE),
            # margin=0,padding=0,
            title_standoff=10,
            # ticker=bokeh.models.LogTicker(),
            orientation='horizontal',
            major_label_overrides=ml)

        cart_fig.add_layout(cb, 'above')
        # cb.title_text_align = 'left'
        cart_fig.title.text = self.BAR_TITLE_DIC[frente]
        cart_fig.title.align = 'center'

        # layout = row(column(slider, cart_f),map_f)
        layout = bokeh.layouts.gridplot([[slider, None], [cart_fig, map_fig]],
                                        merge_tools=False)
        # layout = bokeh.layouts.column([slider, cart_fig])

        cart_fig.x_range.start = self.CXS
        cart_fig.x_range.end = self.CXE
        cart_fig.y_range.start = self.CYS
        cart_fig.y_range.end = self.CYE

        _ll = ebu.lola_to_cart(lo=[self.MXS, self.MXE],
                               la=[self.MYS, self.MYE])
        map_fig.x_range.start = _ll[0][0]
        map_fig.x_range.end = _ll[0][1]
        map_fig.y_range.start = _ll[1][0]
        map_fig.y_range.end = _ll[1][1]

        cart_fig.xaxis.major_tick_line_color = None  # turn off x-axis major ticks
        cart_fig.xaxis.minor_tick_line_color = None  # turn off x-axis minor ticks
        cart_fig.yaxis.major_tick_line_color = None  # turn off y-axis major ticks
        cart_fig.yaxis.minor_tick_line_color = None
        cart_fig.xaxis.major_label_text_font_size = '0pt'  # turn off x-axis tick labels
        cart_fig.yaxis.major_label_text_font_size = '0pt'  # turn off y-axis tick labels

        bokeh.plotting.show(layout)
        return data