def delay_pulses_on_layer_0_and_1(net, t0s=[0., 20], i_max=50.): #i_max = 50. #5. # (some unit) # t0=50. # ms #dts = 10. w = 1. #ms for (i,neuron) in enumerate(net.layers[0].nodes()): neuron.i_inj = i_max*electrodes.unit_pulse(t,t0s[0],w) # the jitcode t for neuron in net.layers[1].nodes(): neuron.i_inj = i_max*electrodes.unit_pulse(t,t0s[1],w)
def get_poisson_spike_train(rates, t0=0., time_total=100., i_max=50., w=1.): #w = 1. #pules width ms i_injs = [] trains = poisson_train(rates, time_total) for train in trains: train = train[train <= time_total] i_inj = sum(i_max*electrodes.unit_pulse(t,t0+t_spike,w) for t_spike in train) i_injs.append(i_inj) return i_injs, trains
def pulse_on_layer(net, layer_idx, t0=50., i_max=50.): w = 1. #ms for (i,neuron) in enumerate(net.layers[layer_idx].nodes()): neuron.i_inj = i_max*electrodes.unit_pulse(t,t0,w) # the jitcode t
def pulse_train_on_layer(net, layer_idx, t0s, i_max=50.): w = 1. #ms i_inj = i_max*sum(electrodes.unit_pulse(t,t0,w) for t0 in t0s) for (i,neuron) in enumerate(net.layers[layer_idx].nodes()): neuron.i_inj = i_inj # the jitcode t
def delay_pulses_on_presyn_0_and_1(net, t0s=[0., 20], i_max=55., w=1.0): for (i, neuron) in enumerate(net.layers[0].nodes()): neuron.i_inj = i_max * electrodes.unit_pulse(t, t0s[i], w) # the jitcode t