lr_dec = 0.995 batch_size = 1 if args.resume is not None: # Load pretrained network params model.load_state_dict(torch.load(os.path.expanduser(args.resume))) dataset_mean = (143.97594, ) dataset_std = (44.264744, ) # Transformations to be applied to samples before feeding them to the network common_transforms = [ transforms.Normalize(mean=dataset_mean, std=dataset_std, inplace=True) ] train_transform = transforms.Compose(common_transforms + [ transforms.RandomCrop((128, 128)), # Use smaller patches for training transforms.RandomFlip(), transforms.AdditiveGaussianNoise(prob=0.5, sigma=0.1) ]) valid_transform = transforms.Compose(common_transforms + [transforms.RandomCrop((144, 144))]) # Specify data set train_dataset = SimpleNeuroData2d(train=True, transform=train_transform, out_channels=out_channels) valid_dataset = SimpleNeuroData2d(train=False, transform=valid_transform, out_channels=out_channels) # Set up optimization optimizer = optim.Adam(model.parameters(), weight_decay=0.5e-4,
if optimizer_state_dict is None: logger.warning('optimizer_state_dict not found.') if lr_sched_state_dict is None: logger.warning('lr_sched_state_dict not found.') elif isinstance(state, nn.Module): logger.warning(_warning_str) model = state else: raise ValueError(f'Can\'t load {pretrained}.') # Transformations to be applied to samples before feeding them to the network common_transforms = [ transforms.SqueezeTarget(dim=0), ] train_transform = transforms.Compose(common_transforms + [ transforms.RandomFlip(ndim_spatial=3), transforms.RandomGrayAugment(channels=[0], prob=0.3), transforms.RandomGammaCorrection(gamma_std=0.25, gamma_min=0.25, prob=0.3), transforms.AdditiveGaussianNoise(sigma=0.1, channels=[0], prob=0.3), ]) valid_transform = transforms.Compose(common_transforms + []) # Specify data set aniso_factor = 2 # Anisotropy in z dimension. E.g. 2 means half resolution in z dimension. common_data_kwargs = { # Common options for training and valid sets. 'aniso_factor': aniso_factor, 'patch_shape': (48, 96, 96), # 'offset': (8, 20, 20), 'num_classes': 2, # 'in_memory': True # Uncomment to avoid disk I/O (if you have enough host memory for the data) }