Example #1
0
def test_elmk_diabetes():

    # load dataset
    data = elm.read("elmTestData/diabetes.data")

    # create a regressor
    elmk = elm.ELMKernel()

    try:
        # search for best parameter for this dataset
        # elmk.search_param(data, cv="kfold", of="rmse")

        # split data in training and testing sets
        tr_set, te_set = elm.split_sets(data, training_percent=.8, perm=True)

        #train and test
        tr_result = elmk.train(tr_set)
        te_result = elmk.test(te_set)

    except:
        ERROR = 1
    else:
        ERROR = 0

    assert (ERROR == 0)
Example #2
0
def run_model(X_train, X_test):
    print("\t\t\txxxxx ELM (polynomial) model xxxxx")
    # set parameters
    # params = ['poly', 0.5, [5]]

    # create a classifier ** mostly only classifier
    elmk = elm.ELMKernel()
    elmk.search_param(X_train, cv="kfold", of="accuracy", kf=["poly"], eval=10)
    #train and test
    # results are Error objects
    tr_result = elmk.train(np.array(X_train))
    te_result = elmk.test(np.array(X_test))

    # print(te_result.expected_targets)
    # print(te_result.predicted_targets)

    test_result = [1 if x > 0.5 else 0 for x in te_result.predicted_targets]
    # print(test_result)
    print(
        'Accuracy: ' +
        str(100 *
            metrics.accuracy_score(te_result.expected_targets, test_result)) +
        '%')

    print('F1 score: ' +
          str(metrics.f1_score(te_result.expected_targets, test_result)))

    fpr, tpr, thresholds = metrics.roc_curve(te_result.expected_targets,
                                             test_result,
                                             pos_label=1)
    print("Area under curve: " + str(metrics.auc(fpr, tpr)))
Example #3
0
def main():

    # Load in 2D velocity data
    velocity = data.load_data()
    # data.example_of_data(velocity)
    # form testing and training sets for velocity data
    X_train, y_train, X_test, y_test = data.form_train_test_sets(velocity)

    # Data transformation
    #print(X_test[0]['u'].shape)
    print("len of y", len(y_test))
    # print("shape of y", y_test.shape)
    #print(y_train)

    #print(X_train['u'].shape)

    import elm as standard_elm
    # create a classifier
    elmk = standard_elm.ELMKernel()
    nn_structure = [9, 100, 1]
    x, y = utils.transform_dict_for_nn(X_train, y_train, nn_structure[0])
    x = np.transpose(x)
    y = np.transpose([y])

    tr_set = np.concatenate(
        (y, x), 1)  #standard format for elm function - y_train + x_train

    x_test, y_test = utils.transform_dict_for_nn(X_test[0], y_test[0],
                                                 nn_structure[0])
    #x_test = np.transpose(x_test)
    #y_test = np.transpose([y_test])

    #te_set = np.concatenate((y_test, x_test), 1)

    # load dataset
    dataa = standard_elm.read("boston.data")

    # create a classifier
    elmk = standard_elm.elmk.ELMKernel()

    # split data in training and testing sets
    # use 80% of dataset to training and shuffle data before splitting
    tr_set, te_set = standard_elm.split_sets(dataa,
                                             training_percent=.8,
                                             perm=True)

    #train and test
    # results are Error objects
    tr_result = elmk.train(tr_set)
    te_result = elmk.test(te_set)
    print(te_result.get_accuracy())
    te_result.predicted_targets
Example #4
0
                                                  3), onehot_encode(
                                                      test_diff, 3)

            # Concatenate subject and difficulty
            train_data = np.concatenate((train_data, train_sub, train_diff),
                                        axis=1)
            test_data = np.concatenate((test_data, test_sub, test_diff),
                                       axis=1)

        # Classification
        if args.clf_model == 'LDA':
            clf_model = LDA()
        elif args.clf_model == 'SVM':
            clf_model = SVC(C=1)
        elif args.clf_model == 'ELMK':
            clf_model = elm.ELMKernel()
        elif args.clf_model == 'ELMR':
            clf_model = elm.ELMRandom()

        if args.clf_model in ['ELMK', 'ELMR']:
            train_elm_data = np.concatenate(
                (train_label[:, np.newaxis], train_data), axis=1)
            test_elm_data = np.concatenate(
                (test_label[:, np.newaxis], test_data), axis=1)
            clf_model.search_param(train_elm_data,
                                   cv="kfold",
                                   of="accuracy",
                                   eval=10)
            train_acc = clf_model.train(train_elm_data).get_accuracy()
            test_acc = clf_model.test(test_elm_data).get_accuracy()
        elif args.clf_model in ['pcafc', 'pcafc_sd']:
Example #5
0
def main(index_exp=0):

    dirName = '%s_%s_data%d_%s' % (args.ext_model, args.rgr_model,
                                   args.data_cate, args.append_name)
    fileName = '%s_exp%d' % (dirName, index_exp)

    # Create folder for results of this model
    if not os.path.exists('./results/%s' % (dirName)):
        os.makedirs('./results/%s' % (dirName))

    print('Extraction model: %s' % (args.ext_model))
    print('Regression model: %s' % (args.rgr_model))

    if args.ext_model == 'vgg16':
        net = tv_models.vgg16(pretrained=True).to(device=device)
        set_parameter_requires_grad(net, True)
        net.classifier[6] = Identity()
    elif args.ext_model == 'resnet50':
        net = tv_models.resnet50(pretrained=True).to(device=device)
        set_parameter_requires_grad(net, True)
        net.fc = Identity()

    # Get dataset
    batchSize = 64
    input_size = 224
    # Load Data
    data_transforms = {
        'train': transforms.Compose([ndl.Rescale(input_size),
                                     ndl.ToTensor()]),
        'test': transforms.Compose([ndl.Rescale(input_size),
                                    ndl.ToTensor()])
    }

    print("Initializing Datasets and Dataloaders...")

    # Create training and testing datasets
    image_datasets = {
        x: ndl.TopoplotLoader(args.image_folder,
                              x,
                              transform=data_transforms[x],
                              index_exp=index_exp)
        for x in ['train', 'test']
    }

    # Create training and testing dataloaders
    dataloaders_dict = {
        'train':
        Data.DataLoader(image_datasets['train'],
                        batch_size=batchSize,
                        shuffle=False,
                        num_workers=4),
        'test':
        Data.DataLoader(image_datasets['test'],
                        batch_size=batchSize,
                        shuffle=False,
                        num_workers=4)
    }

    # Extract features by VGG16
    net.eval()  # Disable batchnorm, dropout
    X_train, Y_train = extract_layer(dataloaders_dict['train'], net)
    X_test, Y_test = extract_layer(dataloaders_dict['test'], net)

    # Standardize data before PCA
    if args.scale:
        X_train, X_test = preprocessing.scale(X_train, X_test, mode=args.scale)

    # Apply PCA to reduce dimension
    if args.n_components > 1:
        args.n_components = int(args.n_components)
    pca = PCA(n_components=args.n_components, svd_solver='full')
    pca.fit(X_train)

    X_train = pca.transform(X_train)
    X_test = pca.transform(X_test)
    print('(X) Number of features after PCA: %d' % (X_train.shape[1]))
    print('(X) Explained variance ratio: %.3f' %
          (np.sum(pca.explained_variance_ratio_)))

    # Add conditional entropy
    if args.add_CE and args.data_cate == 2:
        print('Add conditional entropy as additional features...')

        with open(
                './raw_data/CE_sub%d_channel21_exp%d_train.data' %
            (args.subject_ID, index_exp), 'rb') as fp:
            CE_train = pickle.load(fp)
        with open(
                './raw_data/CE_sub%d_channel21_exp%d_test.data' %
            (args.subject_ID, index_exp), 'rb') as fp:
            CE_test = pickle.load(fp)

        # Scale CE
        CE_train, CE_test = preprocessing.scale(CE_train, CE_test)

        # Apply PCA
        pca = PCA(n_components=30, svd_solver='full')
        pca.fit(CE_train)
        CE_train = pca.transform(CE_train)
        CE_test = pca.transform(CE_test)

        print('(CE) Number of features after PCA: %d' % (CE_train.shape[1]))
        print('(CE) Explained variance ratio: %.3f' %
              (np.sum(pca.explained_variance_ratio_)))

        # Concatentate with X
        X_train = np.concatenate((X_train, CE_train), axis=1)
        X_test = np.concatenate((X_test, CE_test), axis=1)

    # Regression to predict solution latency
    X_train_Reg = X_train
    X_test_Reg = X_test
    if args.rgr_model == 'LR':
        rgr = linear_model.LinearRegression()
    elif args.rgr_model == 'Ridge':
        rgr = linear_model.Ridge(alpha=1)
    elif args.rgr_model == 'GPR':
        kernel = RBF(10, (1e-2, 1e2)) + ConstantKernel(10, (1e-2, 1e2))
        rgr = GaussianProcessRegressor(kernel=kernel, random_state=0)
    elif args.rgr_model == 'ELMK':
        rgr = elm.ELMKernel()
    elif args.rgr_model == 'ELMR':
        params = ["sigmoid", 1, 500, False]
        rgr = elm.ELMRandom(params)

    if args.rgr_model not in ['ELMK', 'ELMR']:
        rgr.fit(X_train_Reg, Y_train)
        pred_train = rgr.predict(X_train_Reg)
        pred_test = rgr.predict(X_test_Reg)
    else:
        # Scale target into -1~1
        if args.scale_target == 2:

            scaler = TargetScaler(num_step=10)
            scaler.fit(Y_train)
            Y_train, Y_test = scaler.transform(Y_train), scaler.transform(
                Y_test)
        elif args.scale_target == 1:

            Y_train, Y_test = (Y_train - 30) / 30, (Y_test - 30) / 30

        # Concatenate data for extreme learning machine
        train_data = np.concatenate((Y_train[:, np.newaxis], X_train), axis=1)
        test_data = np.concatenate((Y_test[:, np.newaxis], X_test), axis=1)

        rgr.search_param(train_data, cv="kfold", of="rmse", eval=10)

        pred_train = rgr.train(train_data).predicted_targets
        pred_test = rgr.test(test_data).predicted_targets

        # Scale target back to 0~60
        if args.scale_target == 2:

            [Y_train, Y_test, pred_train, pred_test] = [scaler.transform(x, mode='inverse') for x in \
                                           [Y_train, Y_test, pred_train, pred_test]]
        elif args.scale_target == 1:

            [Y_train, Y_test, pred_train, pred_test] = [x*30+30 for x in \
                                           [Y_train, Y_test, pred_train, pred_test]]

    evaluate_result.plot_scatter(Y_test, pred_test, dirName, fileName)

    print('Train std: %.3f' % (mean_squared_error(Y_train, pred_train)**0.5))
    print('Test std: %.3f' % (mean_squared_error(Y_test, pred_test)**0.5))

    # Save targets and predictions
    dict_target = {}
    dict_target['target'], dict_target['pred'] = Y_test, pred_test
    with open('./results/%s/%s.data' % (dirName, fileName), 'wb') as fp:
        pickle.dump(dict_target, fp)

    return
Example #6
0
from sklearn import svm

features = features.reshape(16000,38)

clf1 = svm.SVC()
clf1.fit(features,  y_train)
featurestest = featurestest.reshape(4000, 38)

accuracy = clf1.score(featurestest,y_test)
accuracy *= 100
print(accuracy)
import h5py





filename = 'resnet_svm_model_color.sav'
pickle.dump(clf1, open(filename, 'wb'))

!pip3 install elm
!pip3 install --upgrade numpy folium imgaug

import elm
elmk=elm.ELMKernel()
elmk.search_param(data, cv="kfold", of="accuracy", eval=10)

tr_result = elmk.train(features,y_train)
te_result = elmk.test(featurestest,y_test)

print(te_result.get_accuracy)
Example #7
0
def buildELM(data, iterNum, isNormal, isRegression, isPCA, n_components,normalMethod):
    rfList = []
    elmr = elm.ELMKernel()
    # elmr = elm.ELMRandom()
    elmr.search_param(data, eval=100, cv='kfold')
    # print("This is X_norm: ", X_norm)
    for j in range(iterNum):
        # X_train, X_test, y_train, y_test = train_test_split(X_norm, y, test_size=0.2)

        # param_test1 = {'n_hidden': range(10, 21, 10)}
        # model = GridSearchCV(estimator=elm.ELMRegressor(),
        #                        param_grid=param_test1, cv=5, n_jobs=1)
        # model = elm.ELMRegressor(n_hidden=tempDim,activation_func='sine')
        # model = elm.ELMRegressor(activation_func='tanh')
        # model = elm.GenELMRegressor()
        # temp = model.fit(X_train, y_train)
        # print("The best parameters are %s with a score of %0.2f"
        #       % (model.best_params_, model.best_score_))
        # Predict on new data
        # y_pred = temp.predict(X_test).tolist()
        # y_test_list = y_test.tolist()

        # create a classifier
        # elmr = elm.ELMRandom()
        # search for best parameter for this dataset
        # define "kfold" cross-validation method, "accuracy" as a objective function
        # to be optimized and perform 10 searching steps.
        # best parameters will be saved inside 'elmk' object


        # split data in training and testing sets
        # use 80% of dataset to training and shuffle data before splitting

        tr_set, te_set = elm.split_sets(data, training_percent=.9, perm=True)
        # print("This is tr_set: ", tr_set)

        X_train = tr_set[:, 1:].copy()
        # print("This is X_train", X_train)
        X_test = te_set[:, 1:].copy()
        # print("This is X_test: ", X_test)


        if normalMethod == 1:
            print("Normalizer() is using..." )
            sc = preprocessing.Normalizer()
        elif normalMethod == 2:
            print("StandardScalar() is using...")
            sc = preprocessing.StandardScaler()
        elif normalMethod == 3:
            print("MinMaxScalar() is using...")
            sc = preprocessing.MinMaxScaler()

        sc.fit(X_train)
        X_train_std = sc.transform(X_train)
        X_test_std = sc.transform(X_test)

        if isPCA:
            X_train, X_test = reduceDim.featureExtraction(X_train_std, X_test_std, n_components)
        else:
            X_train = X_train_std
            X_test = X_test_std

        tr_set = np.c_[tr_set[:, 0], X_train]
        te_set = np.c_[te_set[:, 0], X_test]

        # print("This is new tr_set: ", tr_set)
        # print("This is new te_set: ", te_set)
        # train and test
        # results are Error objects
        tr_result = elmr.train(tr_set)
        te_result = elmr.test(te_set)
        y_test_list = te_result.expected_targets
        y_pred = te_result.predicted_targets
        # print("This is tr_result: ", tr_result.expected_targets)
        # print("This is tr_result pre: ",tr_result.predicted_targets )
        # print("This is te_result: ", te_result.expected_targets)  # expected is the real value
        # print("This is te_result predict: ", te_result.predicted_targets)
        # print(te_result.get_accuracy)
        if isRegression:
            return y_pred
        else:
            sum_mean = 0
            for i in range(len(y_pred)):
                # print(
                #     "This is REAL value %.4f, ======ELM=====> PRED value: %.4f" % (y_test_list[i], y_pred[i]))
                # sum_mean += (y_pred[i] - y_test[i]) ** 2  # if the target is np array
                sum_mean += (float("{0:.4f}".format(float(y_pred[i]))) - y_test_list[i]) ** 2
                # else:
                #     print("This is REAL value %.4f, ======Random Forest=====> PRED value: %.4f" % (
                #         y_test.values[i], y_pred[i]))
                #     # sum_mean += (y_pred[i] - y_test.values[i]) ** 2
                #     sum_mean += (float("{0:.4f}".format(float(y_pred[i]))) - y_test.values[i]) ** 2
            sum_erro = np.sqrt(sum_mean / len(y_pred))
            rfList.append(sum_erro)
            print("This is RMSE for ELM: ", sum_erro)
            print("This is iteration num: ", j + 1)
    return rfList