] for i in range(len(SENT2VEC)): s2vsingle[i].load_state(SENT2VEC[i]) s2vsingle[i].set_w2v_path(PATH_TO_W2V) s2vsingle[i] = s2vsingle[i].cuda() sent2vec = Sent2Vec(s2vsingle, 'concat') params_model = {'bsize': 64, 'pool_type': 'mean', 'which_layer': 'all', 'optfile': ELMO_OPTIONS, 'wgtfile': ELMO_WEIGHT} elmo = ELMo(params_model) elmo = elmo.cuda() gensen_1 = GenSenSingle( model_folder=FOLDER_PATH, filename_prefix=PREFIX1, pretrained_emb=PRETRAIN_EMB, cuda=True ) gensen_2 = GenSenSingle( model_folder=FOLDER_PATH, filename_prefix=PREFIX2, pretrained_emb=PRETRAIN_EMB, cuda=True ) gensen = GenSen(gensen_1, gensen_2)
} # Set up logger logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG) if __name__ == "__main__": # Load InferSent model params_model = { 'bsize': 64, 'pool_type': 'mean', 'which_layer': 'all', 'optfile': OPT_PATH, 'wgtfile': MODEL_PATH } model = ELMo(params_model) params_senteval['elmo'] = model.cuda() se = senteval.engine.SE(params_senteval, batcher, prepare) transfer_tasks = [ 'STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC', 'SICKEntailment', 'SICKRelatedness', 'STSBenchmark', 'Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion' ] results_transfer = se.eval(transfer_tasks) print('--------------------------------------------') print('MR [Dev:%.1f/Test:%.1f]' % (results_transfer['MR']['devacc'], results_transfer['MR']['acc'])) print('CR [Dev:%.1f/Test:%.1f]' %