Example #1
0
def cpa_attack_trace_set(trace_set, result, conf):
    if result.guess_sample_score_matrix is None:
        raise EMMAException("Score matrix is not initialized.")

    if not trace_set.windowed:
        logger.warning("Trace set not windowed. Skipping attack.")
        return

    if trace_set.num_traces <= 0:
        logger.warning("Skipping empty trace set.")
        return

    hypotheses = np.empty([256, trace_set.num_traces])

    # 1. Build hypotheses for all 256 possibilities of the key and all traces
    leakage_model = LeakageModel(conf)
    for subkey_guess in range(0, 256):
        for i in range(0, trace_set.num_traces):
            hypotheses[subkey_guess, i] = leakage_model.get_trace_leakages(
                trace=trace_set.traces[i],
                subkey_start_index=conf.subkey,
                key_hypothesis=subkey_guess)

    # 2. Given point j of trace i, calculate the correlation between all hypotheses
    for j in range(0, trace_set.window.size):
        # Get measurements (columns) from all traces
        measurements = np.empty(trace_set.num_traces)
        for i in range(0, trace_set.num_traces):
            measurements[i] = trace_set.traces[i].signal[j]

        # Correlate measurements with 256 hypotheses
        for subkey_guess in range(0, 256):
            # Update correlation
            result.guess_sample_score_matrix.update(
                (subkey_guess, j), hypotheses[subkey_guess, :], measurements)
Example #2
0
    def test_hmac_hw(self):
        fake_pt  = np.array([0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08], dtype=np.uint8)
        fake_key = np.array([0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80], dtype=np.uint8)
        trace = Trace(signal=[], plaintext=fake_pt, ciphertext=[], key=fake_key, mask=[])

        lm = LeakageModel(Namespace(leakage_model="hmac_hw", key_low=0, key_high=1))
        self.assertEqual(lm.subkey_size, 4)  # HMAC uses subkeys of size 4
        leakage_subkey_0 = lm.get_trace_leakages(trace, 0)  # hw32(0x40302010)
        leakage_subkey_1 = lm.get_trace_leakages(trace, 1)  # hw32(0x80706050)
        self.assertEqual(leakage_subkey_0[0], hw32(0x40302010))
        self.assertEqual(leakage_subkey_1[0], hw32(0x80706050))
        self.assertEqual(leakage_subkey_0[1], hw32(0x40302010 ^ 0x36363636))
        self.assertEqual(leakage_subkey_1[1], hw32(0x80706050 ^ 0x36363636))
        self.assertEqual(leakage_subkey_0[2], hw32(0x40302010 ^ 0x5c5c5c5c))
        self.assertEqual(leakage_subkey_1[2], hw32(0x80706050 ^ 0x5c5c5c5c))
Example #3
0
def _get_correlation_loss(conf):
    num_outputs = LeakageModel.get_num_outputs(conf)
    num_keys = conf.key_high - conf.key_low

    def correlation_loss(y_true_raw, y_pred_raw):
        """
        Custom loss function that calculates the Pearson correlation of the prediction with
        the true values over a number of batches.
        """
        if num_outputs > num_keys:
            y_true_raw = K.reshape(y_true_raw, (-1, num_keys))
            y_pred_raw = K.reshape(y_pred_raw, (-1, num_keys))

        # y_true_raw = K.print_tensor(y_true_raw, message='y_true_raw = ')  # Note: print truncating is incorrect in the print_tensor function
        # y_pred_raw = K.print_tensor(y_pred_raw, message='y_pred_raw = ')
        y_true = (
            y_true_raw - K.mean(y_true_raw, axis=0, keepdims=True)
        )  # We are taking correlation over columns, so normalize columns
        y_pred = (y_pred_raw - K.mean(y_pred_raw, axis=0, keepdims=True))

        loss = K.variable(0.0)
        for key_col in range(0, conf.key_high - conf.key_low):  # 0 - 16
            y_key = K.expand_dims(y_true[:, key_col],
                                  axis=1)  # [?, 16] -> [?, 1]
            y_keypred = K.expand_dims(y_pred[:, key_col],
                                      axis=1)  # [?, 16] -> [?, 1]
            denom = K.sqrt(K.dot(K.transpose(y_keypred), y_keypred)) * K.sqrt(
                K.dot(K.transpose(y_key), y_key))
            denom = K.maximum(denom, K.epsilon())
            correlation = K.dot(K.transpose(y_key), y_keypred) / denom
            loss += 1.0 - correlation

        return loss

    return correlation_loss
Example #4
0
def __perform_classification_attack(emma):
    for subkey in range(emma.conf.key_low, emma.conf.key_high):
        emma.conf.subkey = subkey  # Set in conf, so the workers know which subkey to attack

        async_result = parallel_work(emma.dataset_val.trace_set_paths,
                                     emma.conf,
                                     merge_results=False)
        celery_results = wait_until_completion(async_result,
                                               message="Classifying")

        lm_outputs = LeakageModel(
            emma.conf
        ).onehot_outputs  # Determine leakage model number of outputs (classes)
        predict_count = np.zeros(lm_outputs, dtype=int)
        label_count = np.zeros(lm_outputs, dtype=int)
        logprobs = np.zeros(lm_outputs, dtype=float)
        accuracy = 0
        num_samples = 0

        # Get results from all workers and store in prediction dictionary
        for celery_result in celery_results:
            em_result = celery_result.get()
            assert (len(em_result.labels) == len(em_result.predictions))

            for i in range(0, len(em_result.labels)):
                label = em_result.labels[i]
                prediction = em_result.predictions[i]
                logprob = em_result.logprobs[i]

                if label == prediction:
                    accuracy += 1
                predict_count[prediction] += 1
                label_count[label] += 1
                num_samples += 1

                logprobs += np.array(logprob)

        accuracy /= float(num_samples)

        print("Labels")
        print(label_count)
        print("Predictions")
        print(predict_count)
        print("Best argmax prediction: %02x (hex)" % np.argmax(predict_count))
        print("Argmax accuracy: %.4f" % accuracy)

        if np.sum(label_count) == np.max(label_count):
            print("Best logprob prediction: %02x" % np.argmax(logprobs))
            print("True key               : %02x" % np.argmax(label_count))
        else:
            print(
                "WARNING: logprob prediction not available because there is more than 1 true key label."
            )
Example #5
0
    def _preprocess_trace_set(self, trace_set):
        """
        Preprocess trace_set specifically for AICorrNet
        """

        # Get model inputs (usually the trace signal)
        signals = AIInput(self.conf).get_trace_set_inputs(trace_set)

        # Get model labels (key byte leakage values to correlate / analyze)
        values = LeakageModel(self.conf).get_trace_set_leakages(trace_set)

        return signals, values
Example #6
0
class SignalLeakageAIInput(AIInput):
    input_type = AIInputType.SIGNAL_LEAKAGE

    def __init__(self, conf):
        super().__init__(conf)
        self.leakage_model = LeakageModel(conf)

    def get_trace_inputs(self, trace):
        leakages = []

        for k in range(16):
            leakage = self.leakage_model.get_trace_leakages(trace, k)
            if isinstance(leakage, list) or isinstance(leakage, np.ndarray):
                leakages.extend(list(leakage))
            else:
                leakages.append(leakage)
        leakages = np.array(leakages)

        return np.concatenate((trace.signal, leakages))
Example #7
0
File: models.py Project: rpp0/emma
    def __init__(self, conf, input_dim, name="aicorrnet"):
        super(AICorrNet, self).__init__(conf, name)

        #optimizer = keras.optimizers.SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
        #optimizer = keras.optimizers.Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, decay=0.0)
        if self.cnn:
            optimizer = keras.optimizers.Nadam(lr=conf.lr / 10.0)
        else:
            optimizer = keras.optimizers.Nadam(lr=conf.lr)
        #optimizer = keras.optimizers.Adadelta()

        if not self.cnn:
            self.model = Sequential()
            #initializer = keras.initializers.Constant(value=1.0/input_dim)
            #initializer = keras.initializers.Constant(value=0.5)
            #initializer = keras.initializers.Constant(value=1.0)
            #initializer = keras.initializers.RandomUniform(minval=0, maxval=1.0, seed=None)
            #initializer = keras.initializers.RandomUniform(minval=0, maxval=0.001, seed=None)
            initializer = 'glorot_uniform'
            #constraint = Clip()
            constraint = None

            # Hidden layers
            for i in range(0, self.n_hidden_layers):
                hidden_nodes = conf.n_hidden_nodes
                self.model.add(
                    Dense(hidden_nodes,
                          input_dim=input_dim,
                          use_bias=self.use_bias,
                          activation=None,
                          kernel_initializer=initializer,
                          kernel_regularizer=str_to_reg(
                              self.reg, self.reg_lambda)))
                input_dim = hidden_nodes
                if self.batch_norm:
                    self.model.add(BatchNormalization(momentum=self.momentum))
                self.model.add(str_to_activation(self.activation))

            # Output layer
            extra_outputs = 1 if conf.loss_type == 'correlation_special' else 0
            self.model.add(
                Dense(LeakageModel.get_num_outputs(conf) + extra_outputs,
                      input_dim=input_dim,
                      use_bias=self.use_bias,
                      activation=None,
                      kernel_initializer=initializer,
                      kernel_constraint=constraint,
                      kernel_regularizer=str_to_reg(self.regfinal,
                                                    self.reg_lambda)))
            if self.batch_norm:
                self.model.add(BatchNormalization(momentum=0.1))
            self.model.add(str_to_activation(self.activation))
        else:
            from ascad.ASCAD_train_models import cnn_best_nosoftmax
            self.model = cnn_best_nosoftmax(input_shape=(input_dim, 1),
                                            classes=conf.key_high -
                                            conf.key_low)

        # Compile model
        self.model.compile(optimizer=optimizer, loss=self.loss, metrics=[])

        # Custom callbacks
        self.callbacks['tensorboard'] = CustomTensorboard(
            log_dir='/tmp/keras/' + self.name + '-' + self.id,
            freq=self.metric_freq)

        if not conf.norank:
            self.callbacks['rank'] = rankcallbacks.CorrRankCallback(
                conf,
                '/tmp/keras/' + self.name + '-' + self.id + '/rank/',
                save_best=True,
                save_path=self.model_path)
Example #8
0
    def test_corrtrain_correlation_multi(self):
        from emma.attacks.leakagemodels import LeakageModel
        """
        Artificial example to test AICorrNet and trace processing with multiple leakage values and multiple subkeys.
        """

        # ------------------------------
        # Generate data
        # ------------------------------
        traces = [  # Contains abs(trace). Shape = [trace, point]
            [1, 1, 1, -15],
            [-4, 2, 2, -12],
            [10, 3, 3, 8],
            [8, 1, 1, -14],
            [9, 0, -3, 8],
        ]

        plaintexts = [
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 13, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        ]

        keys = [
            [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        ]

        # Convert to numpy
        traces = np.array(traces)
        plaintexts = np.array(plaintexts)
        keys = np.array(keys)

        trace_set = TraceSet(name='test', traces=traces, plaintexts=plaintexts, keys=keys)

        # ------------------------------
        # Preprocess data
        # ------------------------------
        conf = Namespace(
            max_cache=0,
            augment_roll=False,
            augment_noise=False,
            normalize=False,
            traces_per_set=4,
            online=False,
            dataset_id='qa',
            cnn=False,
            leakage_model=LeakageModelType.AES_MULTI,
            input_type=AIInputType.SIGNAL,
            augment_shuffle=True,
            n_hidden_layers=1,
            n_hidden_nodes=256,
            activation='leakyrelu',
            metric_freq=100,
            regularizer=None,
            reglambda=0.001,
            model_suffix=None,
            use_bias=True,
            batch_norm=True,
            hamming=False,
            key_low=1,
            key_high=3,
            loss_type='correlation',
            lr=0.001,
            epochs=5000,
            batch_size=512,
            norank=False,
        )
        it_dummy = AICorrSignalIterator([], conf, batch_size=10000, request_id=None, stream_server=None)
        x, y = it_dummy._preprocess_trace_set(trace_set)

        # ------------------------------
        # Train and obtain encodings
        # ------------------------------
        model = models.AICorrNet(conf, input_dim=4, name="test")
        print(model.info())
        rank_cb = rankcallbacks.CorrRankCallback(conf, '/tmp/deleteme/', save_best=False, save_path=None)
        rank_cb.set_trace_set(trace_set)

        if model.using_regularization:
            print("Warning: cant do correlation loss test because regularizer will influence loss function")
            return

        # Find optimal weights
        print("The x (EM samples) and y (leakage model values) are:")
        print(x)
        print(y)
        print("When feeding x through the model without training, the encodings become:")
        print(model.predict(x))
        print("Training now")
        model.train_set(x, y, save=False, epochs=conf.epochs, extra_callbacks=[rank_cb])
        print("Done training")

        # Get the encodings of the input data using the same approach used in ops.py corrtest (iterate over rows)
        result = []
        for i in range(0, x.shape[0]):
            result.append(model.predict(np.array([x[i,:]], dtype=float))[0])  # Result contains sum of points such that corr with y[key_index] is maximal for all key indices. Shape = [trace, 16]
        result = np.array(result)
        print("When feeding x through the model after training, the encodings for key bytes %d to %d become:\n %s" % (conf.key_low, conf.key_high, str(result)))

        # ------------------------------
        # Check loss function
        # ------------------------------
        # Evaluate the model to get the loss for the encodings
        predicted_loss = model.model.evaluate(x, y, verbose=0)

        # Manually calculate the loss using numpy to verify that we are learning a correct correlation
        calculated_loss = 0
        num_keys = (conf.key_high - conf.key_low)
        num_outputs = LeakageModel.get_num_outputs(conf) // num_keys
        for i in range(0, num_keys):
            subkey_hws = y[:, i*num_outputs:(i+1)*num_outputs]
            subkey_encodings = result[:, i*num_outputs:(i+1)*num_outputs]
            print("Subkey %d HWs   : %s" % (i + conf.key_low, str(subkey_hws)))
            print("Subkey %d encodings: %s" % (i + conf.key_low, str(subkey_encodings)))
            y_key = subkey_hws.reshape([-1, 1])
            y_pred = subkey_encodings.reshape([-1, 1])
            print("Flattened subkey %d HWs   : %s" % (i + conf.key_low, str(y_key)))
            print("Flattened subkey %d encodings: %s" % (i + conf.key_low, str(y_pred)))

            # Calculate correlation (numpy approach)
            corr_key_i = np.corrcoef(y_pred[:, 0], y_key[:, 0], rowvar=False)[1,0]
            print("corr_num: %s" % corr_key_i)

            calculated_loss += 1.0 - corr_key_i

        print("These values should be close:")
        print("Predicted loss: %s" % str(predicted_loss))
        print("Calculated loss: %s" % str(calculated_loss))
        self.assertAlmostEqual(predicted_loss, calculated_loss, places=2)
Example #9
0
 def __init__(self, conf):
     super().__init__(conf)
     self.leakage_model = LeakageModel(conf)