Example #1
0
def generate_model(model_name):
    """Generate a simple model for end-to-end testing using natural language."""
    tp = trips.process_text('BRAF activates MAP2K1. '
                            'Active MAP2K1 activates MAPK1.')
    indra_stmts = tp.statements
    emmaa_stmts = [
        EmmaaStatement(stmt, datetime.datetime.now(), 'MAPK1')
        for stmt in indra_stmts
    ]
    # Create a CXAssembled model, upload to NDEx and retrieve key
    #cxa = CxAssembler(indra_stmts)
    #cxa.make_model()
    #ndex_id = cxa.upload_model(private=False)
    config_dict = {
        'ndex': {
            'network': 'a08479d1-24ce-11e9-bb6a-0ac135e8bacf'
        },
        'search_terms': [{
            'db_refs': {
                'HGNC': '20974'
            },
            'name': 'MAPK1',
            'search_term': 'MAPK1',
            'type': 'gene'
        }]
    }
    emmaa_model = EmmaaModel(model_name, config_dict)
    emmaa_model.add_statements(emmaa_stmts)
    return emmaa_model, config_dict
Example #2
0
def test_model_json():
    """Test the json structure and content of EmmaaModel.to_json() output"""
    indra_stmts = \
        [Activation(Agent('BRAF', db_refs={'HGNC': '20974'}),
                    Agent('MAP2K1'),
                    evidence=[Evidence(text='BRAF activates MAP2K1.')]),
         Activation(Agent('MAP2K1',
                          activity=ActivityCondition('activity', True)),
                    Agent('MAPK1'),
                    evidence=[Evidence(text='Active MAP2K1 activates MAPK1.')])
         ]
    st = SearchTerm('gene', 'MAP2K1', db_refs={}, search_term='MAP2K1')
    emmaa_stmts = [
        EmmaaStatement(stmt, datetime.datetime.now(), [st])
        for stmt in indra_stmts
    ]
    config_dict = {
        'ndex': {
            'network': 'a08479d1-24ce-11e9-bb6a-0ac135e8bacf'
        },
        'search_terms': [{
            'db_refs': {
                'HGNC': '20974'
            },
            'name': 'MAPK1',
            'search_term': 'MAPK1',
            'type': 'gene'
        }]
    }
    emmaa_model = EmmaaModel('test', config_dict)
    emmaa_model.add_statements(emmaa_stmts)

    emmaa_model_json = emmaa_model.to_json()

    # Test json structure
    assert emmaa_model_json['name'] == 'test'
    assert isinstance(emmaa_model_json['stmts'], list)
    assert emmaa_model_json['ndex_network'] == \
        'a08479d1-24ce-11e9-bb6a-0ac135e8bacf'

    # Test config
    assert emmaa_model_json['search_terms'][0]['type'] == 'gene'
    assert emmaa_model_json['search_terms'][0]['db_refs'] == {'HGNC': '20974'}

    # Test json statements
    assert 'BRAF activates MAP2K1.' == \
           emmaa_model_json['stmts'][0]['stmt']['evidence'][0]['text']
    assert 'BRAF activates MAP2K1.' == \
           emmaa_model_json['stmts'][0]['stmt']['evidence'][0]['text']
    assert 'Active MAP2K1 activates MAPK1.' == \
           emmaa_model_json['stmts'][1]['stmt']['evidence'][0]['text']
    assert emmaa_model_json['stmts'][0]['stmt']['subj']['name'] == 'BRAF'
    assert emmaa_model_json['stmts'][1]['stmt']['subj']['name'] == 'MAP2K1'
    assert emmaa_model_json['stmts'][1]['stmt']['obj']['name'] == 'MAPK1'

    # Need hashes to be strings so that javascript can read them
    assert isinstance(
        emmaa_model_json['stmts'][0]['stmt']['evidence'][0]['source_hash'],
        str)
Example #3
0
def upload_prior(ctype, config, gene_names):
    fname = f'../models/{ctype}/prior_stmts.pkl'
    with open(fname, 'rb') as fh:
        stmts = pickle.load(fh)
    estmts = get_emmaa_statements(stmts, gene_names)
    model = EmmaaModel(ctype, config)
    model.add_statements(estmts)
    model.update_to_ndex()
Example #4
0
def upload_prior(ctype, config):
    fname = f'models/{ctype}/prior_stmts.pkl'
    with open(fname, 'rb') as fh:
        stmts = pickle.load(fh)
    estmts = [
        EmmaaStatement(stmt, datetime.datetime.now(), []) for stmt in stmts
    ]
    model = EmmaaModel(ctype, config)
    model.add_statements(estmts)
    model.upload_to_ndex()
Example #5
0
def test_model_extend():
    ev1 = Evidence(pmid='1234', text='abcd', source_api='x')
    ev2 = Evidence(pmid='1234', text='abcde', source_api='x')
    ev3 = Evidence(pmid='1234', text='abcd', source_api='x')
    indra_sts = [Phosphorylation(None, Agent('a'), evidence=ev) for ev in
                 [ev1, ev2, ev3]]
    emmaa_sts = [EmmaaStatement(st, datetime.datetime.now(), []) for st in
                 indra_sts]
    em = EmmaaModel('x', {'search_terms': [], 'ndex': {'network': None}})
    em.add_statements([emmaa_sts[0]])
    em.extend_unique(emmaa_sts[1:])
    assert len(em.stmts) == 2
    stmt = EmmaaStatement(Phosphorylation(None, Agent('b'), evidence=ev1),
                          datetime.datetime.now(), [])
    em.extend_unique([stmt])
    assert len(em.stmts) == 3
Example #6
0
def create_model(relevance=None, paper_ids=None):
    indra_stmts = [
        Activation(Agent('BRAF', db_refs={'HGNC': '1097'}),
                   Agent('MAP2K1', db_refs={'HGNC': '6840'}),
                   evidence=[Evidence(text='BRAF activates MAP2K1.',
                                      source_api='assertion',
                                      text_refs={'TRID': '1234'})]),
        Activation(Agent('MAP2K1', db_refs={'HGNC': '6840'},
                         activity=ActivityCondition('activity', True)),
                   Agent('MAPK1', db_refs={'HGNC': '6871'}),
                   evidence=[Evidence(text='Active MAP2K1 activates MAPK1.',
                                      source_api='assertion',
                                      text_refs={'TRID': '2345'})])
        ]
    st = SearchTerm('gene', 'MAP2K1', db_refs={}, search_term='MAP2K1')
    emmaa_stmts = [
        EmmaaStatement(
            indra_stmts[0], datetime.datetime.now(), [st],
            {'internal': True, 'curated': False}),
        EmmaaStatement(
            indra_stmts[1], datetime.datetime.now(), [st],
            {'internal': True, 'curated': True})
        ]
    config_dict = {
        'ndex': {'network': 'a08479d1-24ce-11e9-bb6a-0ac135e8bacf'},
        'search_terms': [{'db_refs': {'HGNC': '20974'}, 'name': 'MAPK1',
                          'search_term': 'MAPK1', 'type': 'gene'}],
        'human_readable_name': 'Test Model',
        'test': {
            'statement_checking': {'max_path_length': 5, 'max_paths': 1},
            'test_corpus': 'simple_tests',
            'mc_types': ['pysb', 'pybel', 'signed_graph', 'unsigned_graph']},
        'assembly': [
            {'function': 'filter_no_hypothesis'},
            {'function': 'map_grounding'},
            {'function': 'filter_grounded_only'},
            {'function': 'filter_human_only'},
            {'function': 'map_sequence'},
            {'function': 'run_preassembly', 'kwargs': {
                'return_toplevel': False}}]}
    if relevance:
        config_dict['assembly'].append(
            {'function': 'filter_relevance', 'kwargs': {'policy': relevance}})
    emmaa_model = EmmaaModel('test', config_dict, paper_ids)
    emmaa_model.add_statements(emmaa_stmts)
    return emmaa_model
Example #7
0
def create_upload_model(model_name, full_name, indra_stmts, ndex_id=None):
    """Make and upload an EMMAA model from a list of INDRA Statements.

    Parameters
    ----------
    short_name : str
        Short name of the model to use on S3.
    full_name : str
        Human-readable model name to use in EMMAA dashboard.
    indra_stmts : list of indra.statement
        INDRA Statements to be used to populate the EMMAA model.
    ndex_id : str
        UUID of the network corresponding to the model on NDex. If provided,
        the NDex network will be updated with the latest model content.
        If None (default), a new network will be created and the UUID stored
        in the model config files on S3.
    """
    emmaa_stmts = to_emmaa_stmts(indra_stmts, datetime.datetime.now(), [])
    # Get updated CX content for the INDRA Statements
    cxa = CxAssembler(indra_stmts)
    cx_str = cxa.make_model()
    # If we don't have an NDex ID, create network and upload to Ndex
    if ndex_id is None:
        ndex_id = cxa.upload_model(private=False)
        print(f'NDex ID for {model_name} is {ndex_id}.')
    # If the NDEx ID is provided, update the existing network
    else:
        ndex_client.update_network(cx_str, ndex_id)
    # Create the config dictionary
    config_dict = {'ndex': {'network': ndex_id}, 'search_terms': []}
    # Create EMMAA model
    emmaa_model = EmmaaModel(model_name, config_dict)
    emmaa_model.add_statements(emmaa_stmts)
    # Upload model to S3 with config as YAML and JSON
    emmaa_model.save_to_s3()
    s3_client = boto3.client('s3')
    config_json = json.dumps(config_dict)
    s3_client.put_object(Body=config_json.encode('utf8'),
                         Key='models/%s/config.json' % model_name,
                         Bucket='emmaa')
    config_json = json.dumps(config_dict)
    s3_client.put_object(Body=config_json.encode('utf8'),
                         Key='models/%s/config.json' % model_name,
                         Bucket='emmaa')
Example #8
0
def update_cancer(cancer_type):
    """Update the model for the given cancer.

    A JSON config file must be present for the given cancer type, located in
    the models/<cancer_type>/config.json.

    Parameters
    ----------
    cancer_type : str
        A short string which is the name of the cancer, and corresponds to a
        directory in the models directory, as described above.
    """
    print(cancer_type)
    with open(f'models/{cancer_type}/prior_stmts.pkl', 'rb') as fh:
        stmts = pickle.load(fh)
    config = json.load(open(f'models/{cancer_type}/config.json', 'r'))
    em = EmmaaModel(cancer_type, config)
    ess = [EmmaaStatement(st, datetime.datetime.now(), []) for st in stmts]
    em.add_statements(ess)
    em.save_to_s3()
    return
Example #9
0
def create_upload_model(model_name, indra_stmts, config_file):
    """Make and upload an EMMAA model from a list of INDRA Statements.

    Parameters
    ----------
    model_name : str
        Name of the model to use on S3.
    indra_stmts : list of indra.statement
        INDRA Statements to be used to populate the EMMAA model.
    config_file : str
        Path to the local config.json file.
    """
    emmaa_stmts = to_emmaa_stmts(indra_stmts, datetime.datetime.now(), [],
                                 {'internal': True})
    # Load config information
    with open(config_file, 'rt') as f:
        config_json = json.load(f)
    # If there is no ndex entry in the config, create a new network and update
    # the config file with the NDex network ID
    if 'ndex' not in config_json:
        cxa = CxAssembler(indra_stmts)
        cx_str = cxa.make_model()
        ndex_id = cxa.upload_model(private=False)
        print(f'NDex ID for {model_name} is {ndex_id}.')
        config_json['ndex'] = {'network': ndex_id}
        updated_config_file = f'{config_file}.updated'
        with open(updated_config_file, 'wt') as f:
            json.dump(config_json, f, indent=2)
    # If the NDEx ID is provided we don't need to update the existing network
    # because this will occur as part of the model assembly/update procedure
    # on EMMAA itself.
    # Create the config dictionary
    # Create EMMAA model
    emmaa_model = EmmaaModel(model_name, config_json)
    emmaa_model.add_statements(emmaa_stmts)
    # Upload model to S3
    emmaa_model.save_to_s3()
    # Upload config JSON
    s3_client = boto3.client('s3')
    save_config_to_s3(model_name, config_json)
Example #10
0
    def make_model(self, estmts, upload_to_s3=False):
        """Return, and optionally upload to S3 an initial EMMAA Model.

        Parameters
        ----------
        estmts : list of emmaa.statement.EmmaaStatement
            A list of prior EMMAA Statements to initialize the model with.
        upload_to_s3 : Optional[bool]
            If True, the model and the config are uploaded to S3, otherwise
            the model object is just returned without upload. Default: False

        Returns
        -------
        emmaa.model.EmmaaModel
            The EMMAA Model object constructed from the generated config
            and the given EMMAA Statements.
        """
        from emmaa.model import EmmaaModel
        config = self.make_config(upload_to_s3=upload_to_s3)
        model = EmmaaModel(name=self.name, config=config)
        model.add_statements(estmts)
        if upload_to_s3:
            model.save_to_s3()
        return model