Example #1
0
def get_emotion_embeddings(input_file):
    model = EmotionPredictor(classification='plutchik',
                             setting='mc',
                             use_unison_model=True)
    f = open(input_file)
    tweets = f.read().splitlines()
    embeddings = model.embedd(tweets)
    return embeddings
import argparse
from emotion_predictor import EmotionPredictor

parser = argparse.ArgumentParser()
parser.add_argument('-tweets')
args = parser.parse_args()

tweets = args.tweets

model = EmotionPredictor(classification='ekman', setting='mc', use_unison_model=True)

predictions = model.predict_classes(tweets)
print(predictions, '\n')

probabilities = model.predict_probabilities(tweets)
print(probabilities, '\n')

embeddings = model.embedd(tweets)
print(embeddings, '\n')