def get_batch_of_embeddings(data_dir, model_dir, n_speakers, n_utterances):
    # create data set
    speaker_dataset = SpeakerVerificationDataset(data_dir, dataset_len=26)

    # create model
    device = torch.device('cuda')
    model = load_model(model_dir, device)
    model.eval()

    # get embeddings
    print("running model on batch...")
    with torch.no_grad():
        speakers = [
            speaker_dataset[i]
            for i in np.random.randint(0, len(speaker_dataset), n_speakers)
        ]  # for i in np.arange(n_speakers)]
        my_batch = SpeakerBatch(speakers,
                                utterances_per_speaker=n_utterances,
                                n_frames=160)
        my_batch_data = torch.from_numpy(my_batch.data).to(device)
        print("Batch shape: ", my_batch_data.shape)
        embeds = model(my_batch_data)
        print("Embeds shape: ", embeds.shape)

        embeds = embeds.detach().cpu().numpy()
    return embeds
Example #2
0
 def log_dataset(self, dataset: SpeakerVerificationDataset):
     if self.disabled:
         return
     dataset_string = ""
     dataset_string += "<b>Speakers</b>: %s\n" % len(dataset.speakers)
     dataset_string += "\n" + dataset.get_logs()
     dataset_string = dataset_string.replace("\n", "<br>")
     self.vis.text(dataset_string, opts={"title": "Dataset"})
Example #3
0
def create_train_loader(clean_data_root, train_frac):
    # set dataset length to achieve desired no of training steps.
    train_dataset_len = pm.n_steps * pm.speakers_per_batch

    # Create datasets and dataloaders
    train_loader = SpeakerVerificationDataLoader(
        SpeakerVerificationDataset(clean_data_root, train_dataset_len, train_frac),
        pm.speakers_per_batch,
        pm.utterances_per_speaker,
        pd.partials_n_frames,
        num_workers=12,
        drop_last=True
    )
    return train_loader
Example #4
0
def train(run_id: str, clean_data_root: Path, models_dir: Path,
          umap_every: int, save_every: int, backup_every: int, vis_every: int,
          force_restart: bool, visdom_server: str, no_visdom: bool):
    # Create a dataset and a dataloader
    dataset = SpeakerVerificationDataset(clean_data_root)
    loader = SpeakerVerificationDataLoader(
        dataset,
        speakers_per_batch,
        utterances_per_speaker,
        num_workers=8,
    )

    # Setup the device on which to run the forward pass and the loss. These can be different,
    # because the forward pass is faster on the GPU whereas the loss is often (depending on your
    # hyperparameters) faster on the CPU.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # FIXME: currently, the gradient is None if loss_device is cuda
    loss_device = torch.device("cpu")

    # Create the model and the optimizer
    model = SpeakerEncoder(device, loss_device)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init)
    init_step = 1

    # Configure file path for the model
    state_fpath = models_dir.joinpath(run_id + ".pt")
    backup_dir = models_dir.joinpath(run_id + "_backups")

    # Load any existing model
    if not force_restart:
        if state_fpath.exists():
            print(
                "Found existing model \"%s\", loading it and resuming training."
                % run_id)
            checkpoint = torch.load(state_fpath)
            init_step = checkpoint["step"]
            model.load_state_dict(checkpoint["model_state"])
            optimizer.load_state_dict(checkpoint["optimizer_state"])
            optimizer.param_groups[0]["lr"] = learning_rate_init
        else:
            print("No model \"%s\" found, starting training from scratch." %
                  run_id)
    else:
        print("Starting the training from scratch.")
    model.train()

    # Initialize the visualization environment
    vis = Visualizations(run_id,
                         vis_every,
                         server=visdom_server,
                         disabled=no_visdom)
    vis.log_dataset(dataset)
    vis.log_params()
    device_name = str(
        torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU")
    vis.log_implementation({"Device": device_name})

    # Training loop
    profiler = Profiler(summarize_every=10, disabled=False)
    for step, speaker_batch in enumerate(loader, init_step):
        profiler.tick("Blocking, waiting for batch (threaded)")

        # Forward pass
        inputs = torch.from_numpy(speaker_batch.data).to(device)
        sync(device)
        profiler.tick("Data to %s" % device)
        embeds = model(inputs)
        sync(device)
        profiler.tick("Forward pass")
        embeds_loss = embeds.view(
            (speakers_per_batch, utterances_per_speaker, -1)).to(loss_device)
        loss, eer = model.loss(embeds_loss)
        sync(loss_device)
        profiler.tick("Loss")

        # Backward pass
        model.zero_grad()
        loss.backward()
        profiler.tick("Backward pass")
        model.do_gradient_ops()
        optimizer.step()
        profiler.tick("Parameter update")

        # Update visualizations
        # learning_rate = optimizer.param_groups[0]["lr"]
        vis.update(loss.item(), eer, step)

        # Draw projections and save them to the backup folder
        if umap_every != 0 and step % umap_every == 0:
            print("Drawing and saving projections (step %d)" % step)
            backup_dir.mkdir(exist_ok=True)
            projection_fpath = backup_dir.joinpath("%s_umap_%06d.png" %
                                                   (run_id, step))
            embeds = embeds.detach().cpu().numpy()
            vis.draw_projections(embeds, utterances_per_speaker, step,
                                 projection_fpath)
            vis.save()

        # Overwrite the latest version of the model
        if save_every != 0 and step % save_every == 0:
            print("Saving the model (step %d)" % step)
            torch.save(
                {
                    "step": step + 1,
                    "model_state": model.state_dict(),
                    "optimizer_state": optimizer.state_dict(),
                }, state_fpath)

        # Make a backup
        if backup_every != 0 and step % backup_every == 0:
            print("Making a backup (step %d)" % step)
            backup_dir.mkdir(exist_ok=True)
            backup_fpath = backup_dir.joinpath("%s_bak_%06d.pt" %
                                               (run_id, step))
            torch.save(
                {
                    "step": step + 1,
                    "model_state": model.state_dict(),
                    "optimizer_state": optimizer.state_dict(),
                }, backup_fpath)

        profiler.tick("Extras (visualizations, saving)")
Example #5
0
def train(run_id: str, train_data_root: Path, test_data_root: Path,
          models_dir: Path, save_every: int, backup_every: int, vis_every: int,
          force_restart: bool, visdom_server: str, no_visdom: bool):
    # Create a dataset and a dataloader
    dataset = SpeakerVerificationDataset(train_data_root)
    loader = SpeakerVerificationDataLoader(
        dataset,
        speakers_per_batch,
        utterances_per_speaker,
        num_workers=dataloader_workers,
        # pin_memory=True,
    )
    test_dataset = SpeakerVerificationDataset(test_data_root)
    testdata_loader = SpeakerVerificationDataLoader(
        test_dataset,
        speakers_per_batch,
        utterances_per_speaker,
        num_workers=dataloader_workers,
        # pin_memory=True,
    )

    # Setup the device on which to run the forward pass and the loss. These can be different,
    # because the forward pass is faster on the GPU whereas the loss is often (depending on your
    # hyperparameters) faster on the CPU.
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Create the model and the optimizer
    model = SpeakerEncoder(device)
    raw_model = model
    if torch.cuda.device_count() > 1:
        print("Use", torch.cuda.device_count(), "GPUs.")
        # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
        model = torch.nn.DataParallel(model)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init)
    init_step = 1

    # Configure file path for the model
    state_fpath = models_dir.joinpath(run_id + ".pt")
    backup_dir = models_dir.joinpath(run_id + "_backups")

    # Load any existing model
    if not force_restart:
        if state_fpath.exists():
            print(
                "Found existing model \"%s\", loading it and resuming training."
                % run_id)
            checkpoint = torch.load(str(state_fpath))
            init_step = checkpoint["step"]
            raw_model.load_state_dict(checkpoint["model_state"])
            optimizer.load_state_dict(checkpoint["optimizer_state"])
            optimizer.param_groups[0]["lr"] = learning_rate_init
        else:
            print("No model \"%s\" found, starting training from scratch." %
                  run_id)
    else:
        print("Starting the training from scratch.")
    model.train()

    save_interval_s_time = time.time()
    prt_interval_s_time = time.time()
    total_loss, total_eer = 0, 0
    # Training loop
    profiler = Profiler(summarize_every=1, disabled=True)
    for step, speaker_batch in enumerate(loader, init_step):
        # step_s_time = time.time()
        sync(device)
        profiler.tick("Blocking, waiting for batch (threaded)")

        # Forward pass
        inputs = torch.from_numpy(speaker_batch.data).to(device)
        sync(device)
        profiler.tick("Data to %s" % device)
        embeds = model(inputs)
        sync(device)
        profiler.tick("Forward pass")
        embeds_loss = embeds.view(
            (speakers_per_batch, utterances_per_speaker, -1))
        loss, eer = raw_model.loss(embeds_loss)
        # print(loss.item(), flush=True)
        total_loss += loss.item()
        total_eer += eer
        sync(device)
        profiler.tick("Loss")

        # Backward pass
        model.zero_grad()
        loss.backward()
        profiler.tick("Backward pass")
        raw_model.do_gradient_ops()
        optimizer.step()
        sync(device)
        profiler.tick("Parameter update")

        if step % vis_every == 0:
            learning_rate = optimizer.param_groups[0]["lr"]
            prt_interval_e_time = time.time()
            cost_time = prt_interval_e_time - prt_interval_s_time
            prt_interval_s_time = prt_interval_e_time
            print(
                "    Step %06d> %d step cost %d seconds, lr:%.4f, Avg_loss:%.4f, Avg_eer:%.4f."
                % (
                    #   step, save_every, cost_time, loss.detach().numpy(), eer), flush=True)
                    step,
                    vis_every,
                    cost_time,
                    learning_rate,
                    total_loss / vis_every,
                    total_eer / vis_every),
                flush=True)
            total_loss, total_eer = 0, 0

        # Overwrite the latest version of the model && test model
        # save_every = 20
        if save_every != 0 and step % save_every == 0:
            # save
            torch.save(
                {
                    "step": step + 1,
                    "model_state": model.state_dict(),
                    "optimizer_state": optimizer.state_dict(),
                }, str(state_fpath))

            # test
            test_total_loss, test_total_eer = 0.0, 0.0
            for test_step, test_batch in enumerate(testdata_loader, 1):
                testinputs = torch.from_numpy(test_batch.data).to(device)
                with torch.no_grad():
                    test_embeds = model(testinputs)
                    test_embeds_loss = test_embeds.view(
                        (speakers_per_batch, utterances_per_speaker, -1))
                    test_loss, test_eer = raw_model.loss(test_embeds_loss)
                # print(loss.item(), flush=True)
                test_total_loss += test_loss.item()
                test_total_eer += test_eer
                test_prt_interval = 10
                if test_step % test_prt_interval == 0:
                    print(
                        "    |--Test Step %06d> Avg_loss:%.4f, Avg_eer:%.4f." %
                        (test_step, test_total_loss / test_step,
                         test_total_eer / test_step),
                        flush=True)
                if test_step == 50:
                    break

            # print log
            save_interval_e_time = time.time()
            cost_time = save_interval_e_time - save_interval_s_time
            print(
                "\n"
                "++++Step %06d> Saving the model, %d step cost %d seconds." % (
                    #   step, save_every, cost_time, loss.detach().numpy(), eer), flush=True)
                    step,
                    save_every,
                    cost_time),
                flush=True)
            save_interval_s_time = save_interval_e_time

        # Make a backup
        if backup_every != 0 and step % backup_every == 0:
            print("Making a backup (step %d)" % step)
            backup_dir.mkdir(exist_ok=True)
            backup_fpath = str(
                backup_dir.joinpath("%s_bak_%06d.pt" % (run_id, step)))
            torch.save(
                {
                    "step": step + 1,
                    "model_state": model.state_dict(),
                    "optimizer_state": optimizer.state_dict(),
                }, backup_fpath)
        sync(device)
        profiler.tick("Extras (visualizations, saving)")
Example #6
0
        #plt.scatter(projected[:, 0], projected[:, 1], c=colors,marker=markers)
        plt.gca().set_aspect("equal", "datalim")
        plt.title("UMAP projection (step %d)" % step)
        if not self.disabled:
            self.projection_win = self.vis.matplot(plt, win=self.projection_win)
        if out_fpath is not None:
            plt.savefig(out_fpath)
        plt.clf()

    

datasets_root=Path("/data/real-time/test/SV2TTS/encoder/")
encoder_model_fpath=Path("/data/real-time/test/encoder_2_lstm_80_mel_channel.pt")
encoder_out_dir=Path("/data/test/")

dataset = SpeakerVerificationDataset(datasets_root)
loader = SpeakerVerificationDataLoader(
    dataset,
    speakers_per_batch,
    utterances_per_speaker,
    num_workers=2,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# FIXME: currently, the gradient is None if loss_device is cuda
loss_device = torch.device("cpu")

# Load the model
model = SpeakerEncoder(device, loss_device)
state_fpath = encoder_model_fpath
checkpoint = torch.load(state_fpath)
init_step = checkpoint["step"]