Example #1
0
def test_enduse():
    """testing"""
    out = enduse_func.Enduse(submodel='test',
                             region='test',
                             scenario_data='test',
                             assumptions='test',
                             regional_lp_stock='test',
                             non_regional_lp_stock='test',
                             base_yr='test',
                             curr_yr='test',
                             enduse='test',
                             sector='test',
                             fuel=np.zeros((7, 0)),
                             tech_stock='test',
                             heating_factor_y='test',
                             cooling_factor_y='test',
                             fuel_fueltype_tech_p_by='test',
                             sig_param_tech='test',
                             enduse_overall_change='test',
                             criterias='test',
                             strategy_variables='test',
                             fueltypes_nr='test',
                             fueltypes='test',
                             model_yeardays_nrs='test')

    assert out.flat_profile_crit == True
def test_enduse():
    """testing"""
    out = enduse_func.Enduse(submodel_name='test_name',
                             region='test',
                             scenario_data='test',
                             assumptions='test',
                             load_profiles='test',
                             base_yr='test',
                             curr_yr='test',
                             enduse='test',
                             sector='test',
                             fuel=np.zeros((7, 0)),
                             tech_stock='test',
                             heating_factor_y='test',
                             cooling_factor_y='test',
                             fuel_tech_p_by='test',
                             criterias='test',
                             strategy_vars='test',
                             fueltypes_nr='test',
                             fueltypes='test')

    assert out.flat_profile_crit == True
Example #3
0
def simulate_region(region, data, criterias, assumptions, weather_yr,
                    weather_by):
    """Run submodels for a single region

    Arguments
    ---------
    region : str
        Region name
    data : dict
        Data container

    Returns
    -------
    all_submodels : list
        List with submodel objects depending on submodels
    """
    submodel_names = assumptions.submodels_names

    # ----------------------------
    # Create Base year and current weather Regions
    # ----------------------------
    weather_region_cy = WeatherRegion(
        name=region,
        assumptions=assumptions,
        technologies=assumptions.technologies,
        enduses=data['enduses'],
        temp_by=data['temp_data'][weather_by][region],
        temp_cy=data['temp_data'][weather_yr][region],
        tech_lp=data['tech_lp'],
        sectors=data['sectors'],
        crit_temp_min_max=criterias['crit_temp_min_max'])

    # Get region specific disaggregated fuel
    region_fuel_disagg = get_disaggregated_fuel_of_reg(submodel_names,
                                                       data['fuel_disagg'],
                                                       region)

    # ----------------------------
    # Create Region
    # ----------------------------
    region_obj = Region(name=region,
                        longitude=data['reg_coord'][region]['longitude'],
                        latitude=data['reg_coord'][region]['latitude'],
                        region_fuel_disagg=region_fuel_disagg)

    for submodel_name in submodel_names:
        for sector in data['sectors'][submodel_name]:
            for enduse in data['enduses'][submodel_name]:

                # ------------------------------------------------------
                # Configure and select correct Enduse specific inputs
                # ------------------------------------------------------
                if submodel_name == 'industry' and enduse != "is_space_heating":
                    flat_profile_crit = True
                else:
                    flat_profile_crit = False

                if not data['dw_stocks'][submodel_name]:
                    dw_stock = False
                else:
                    dw_stock = data['dw_stocks'][submodel_name][
                        region_obj.name]

                # ---------------
                # Create submodel for region and enduse
                # ---------------
                yield endusefunctions.Enduse(
                    submodel_name=submodel_name,
                    region=region_obj.name,
                    scenario_data=data['scenario_data'],
                    assumptions=assumptions,
                    load_profiles=weather_region_cy.load_profiles,
                    base_yr=assumptions.base_yr,
                    curr_yr=assumptions.curr_yr,
                    enduse=enduse,
                    sector=sector,
                    fuel=region_obj.fuels[submodel_name][enduse][sector],
                    tech_stock=weather_region_cy.tech_stock[submodel_name],
                    heating_factor_y=weather_region_cy.f_heat[submodel_name],
                    cooling_factor_y=weather_region_cy.
                    f_colling[submodel_name],
                    fuel_tech_p_by=assumptions.fuel_tech_p_by[enduse][sector],
                    criterias=criterias,
                    strategy_vars=assumptions.regional_vars[region_obj.name],
                    fueltypes_nr=assumptions.fueltypes_nr,
                    fueltypes=assumptions.fueltypes,
                    dw_stock=dw_stock,
                    reg_scen_drivers=assumptions.scenario_drivers,
                    flat_profile_crit=flat_profile_crit)
Example #4
0
def simulate_region(region, data, criterias, assumptions, weather_stations,
                    weather_yr, weather_by):
    """Run submodels for a single region

    Arguments
    ---------
    region : str
        Region name
    data : dict
        Data container

    Returns
    -------
    all_submodels : list
        List with submodel objects depending on submodels
    """
    submodel_objs = []

    submodel_names = assumptions.submodels_names

    # Get closest weather region object
    weather_region_id = weather_station_location.get_closest_station(
        latitude_reg=data['reg_coord'][region]['latitude'],
        longitude_reg=data['reg_coord'][region]['longitude'],
        weather_stations=weather_stations)

    # ----------------------------
    # Create Base year and current weather Regions
    # ----------------------------
    weather_regions_weather_cy = WeatherRegion(
        name=weather_region_id,
        latitude=weather_stations[weather_region_id]['latitude'],
        longitude=weather_stations[weather_region_id]['longitude'],
        assumptions=assumptions,
        technologies=assumptions.technologies,
        enduses=data['enduses'],
        temp_by=data['temp_data'][weather_by][weather_region_id],
        temp_cy=data['temp_data'][weather_yr][weather_region_id],
        tech_lp=data['tech_lp'],
        sectors=data['sectors'],
        crit_temp_min_max=criterias['crit_temp_min_max'])

    weather_regions_weather_by = WeatherRegion(
        name=weather_region_id,
        latitude=weather_stations[weather_region_id]['latitude'],
        longitude=weather_stations[weather_region_id]['longitude'],
        assumptions=assumptions,
        technologies=assumptions.technologies,
        enduses=data['enduses'],
        temp_by=data['temp_data'][weather_by][weather_region_id],
        temp_cy=data['temp_data'][weather_yr][weather_region_id],
        tech_lp=data['tech_lp'],
        sectors=data['sectors'],
        crit_temp_min_max=criterias['crit_temp_min_max'])

    # Get region specific disaggregated fuel
    region_fuel_disagg = get_disaggregated_fuel_of_reg(submodel_names,
                                                       data['fuel_disagg'],
                                                       region)

    # ----------------------------
    # Create Region
    # ----------------------------
    region_obj = Region(name=region,
                        longitude=data['reg_coord'][region]['longitude'],
                        latitude=data['reg_coord'][region]['latitude'],
                        region_fuel_disagg=region_fuel_disagg,
                        weather_reg_cy=weather_regions_weather_cy,
                        weather_reg_by=weather_regions_weather_by)

    for submodel_name in submodel_names:
        for sector in data['sectors'][submodel_name]:
            for enduse in data['enduses'][submodel_name]:

                # ------------------------------------------------------
                # Configure and select correct Enduse specific inputs
                # ------------------------------------------------------
                if submodel_name == 'industry' and enduse != "is_space_heating":
                    flat_profile_crit = True
                else:
                    flat_profile_crit = False

                if not data['dw_stocks'][submodel_name]:
                    dw_stock = False
                else:
                    dw_stock = data['dw_stocks'][submodel_name][
                        region_obj.name]

                # ---------------
                # Create submodel for region and enduse
                # ---------------
                submodel_obj = endusefunctions.Enduse(
                    submodel_name=submodel_name,
                    region=region_obj.name,
                    scenario_data=data['scenario_data'],
                    assumptions=assumptions,
                    load_profiles=weather_regions_weather_cy.load_profiles,
                    f_weather_correction=region_obj.
                    f_weather_correction[submodel_name],
                    base_yr=assumptions.base_yr,
                    curr_yr=assumptions.curr_yr,
                    enduse=enduse,
                    sector=sector,
                    fuel=region_obj.fuels[submodel_name][enduse][sector],
                    tech_stock=weather_regions_weather_cy.
                    tech_stock[submodel_name],
                    heating_factor_y=weather_regions_weather_cy.
                    f_heat[submodel_name],
                    cooling_factor_y=weather_regions_weather_cy.
                    f_colling[submodel_name],
                    fuel_tech_p_by=assumptions.fuel_tech_p_by[enduse][sector],
                    criterias=criterias,
                    strategy_vars=assumptions.regional_vars[region_obj.name],
                    fueltypes_nr=assumptions.fueltypes_nr,
                    fueltypes=assumptions.fueltypes,
                    dw_stock=dw_stock,
                    reg_scen_drivers=assumptions.scenario_drivers,
                    flat_profile_crit=flat_profile_crit)

                submodel_objs.append(submodel_obj)

    # Collect all submodels with respect to submodel names and store in list
    # e.g. [[all_residential-submodels], [all_service_submodels]...]
    all_submodels = []
    submodels = lookup_tables.basic_lookups()['submodels_names']
    for submodel in submodels:
        submodels = get_all_submodels(submodel_objs, submodel)
        all_submodels.append(submodels)

    return all_submodels
Example #5
0
def industry_submodel(region, weather_region, scenario_data,
                      non_regional_lp_stock, assumptions, lookups, criterias,
                      enduses, sectors):
    """Industry subsector model

    A flat load profile is assumed except for is_space_heating

    Arguments
    ----------
    region : int
        Region
    data : dict
        Data containter
    enduses : list
        Enduses of industry submodel
    sectors : list
        Sectors of industry submodel

    Return
    ------
    submodules : list
        Submodule objects
    """
    logging.debug("... industry submodel start")
    submodels = []

    for sector in sectors:
        for enduse in enduses:

            # ------------------------------------------------------
            # Configure and select correct Enduse() specific inputs
            # ------------------------------------------------------
            if enduse == "is_space_heating":
                flat_profile_crit = False
            else:
                flat_profile_crit = True

            if criterias['spatial_exliclit_diffusion']:
                sig_param_tech = assumptions.is_sig_param_tech[enduse][sector][
                    region.name]
                strategy_variables = assumptions.regional_strategy_variables[
                    region.name]
            else:
                sig_param_tech = assumptions.is_sig_param_tech[enduse][sector]
                strategy_variables = assumptions.strategy_variables

            # ------------------------------------------------------
            # Create submodel
            # ------------------------------------------------------
            submodel = endusefunctions.Enduse(
                submodel='is_submodel',
                region=region.name,
                scenario_data=scenario_data,
                assumptions=assumptions,
                regional_lp_stock=weather_region.is_load_profiles,
                non_regional_lp_stock=non_regional_lp_stock,
                base_yr=assumptions.base_yr,
                curr_yr=assumptions.curr_yr,
                enduse=enduse,
                sector=sector,
                fuel=region.is_enduses_sectors_fuels[enduse][sector],
                tech_stock=weather_region.is_tech_stock,
                heating_factor_y=weather_region.f_heat_is_y,
                cooling_factor_y=weather_region.f_cooling_is_y,
                fuel_fueltype_tech_p_by=assumptions.is_fuel_tech_p_by[enduse]
                [sector],
                sig_param_tech=sig_param_tech,
                enduse_overall_change=assumptions.enduse_overall_change,
                criterias=criterias,
                strategy_variables=strategy_variables,
                fueltypes_nr=lookups['fueltypes_nr'],
                fueltypes=lookups['fueltypes'],
                model_yeardays_nrs=assumptions.model_yeardays_nrs,
                reg_scen_drivers=assumptions.scenario_drivers['is_submodule'],
                flat_profile_crit=flat_profile_crit)

            submodels.append(submodel)

    return submodels
Example #6
0
def service_submodel(region, weather_region, scenario_data, ss_dw_stock,
                     non_regional_lp_stock, assumptions, lookups, criterias,
                     enduses, sectors):
    """Create the service submodules per enduse, sector and region and add to list

    Arguments
    ----------
    data : dict
        Data container
    enduses : list
        All residential enduses
    sectors : list
        Service sectors

    Returns
    -------
    submodels : list
        List with submodels
    """
    logging.debug("... service submodel start")
    submodels = []

    for sector in sectors:
        for enduse in enduses:

            # ------------------------------------------------------
            # Configure and select correct Enduse() specific inputs
            # ------------------------------------------------------
            if criterias['spatial_exliclit_diffusion']:
                sig_param_tech = assumptions.ss_sig_param_tech[enduse][sector][
                    region.name]
                strategy_variables = assumptions.regional_strategy_variables[
                    region.name]
            else:
                sig_param_tech = assumptions.ss_sig_param_tech[enduse][sector]
                strategy_variables = assumptions.strategy_variables

            # ------------------------------------------------------
            # Create submodel
            # ------------------------------------------------------
            submodel = endusefunctions.Enduse(
                submodel='ss_submodel',
                region=region.name,
                scenario_data=scenario_data,
                assumptions=assumptions,
                regional_lp_stock=weather_region.ss_load_profiles,
                non_regional_lp_stock=non_regional_lp_stock,
                base_yr=assumptions.base_yr,
                curr_yr=assumptions.curr_yr,
                enduse=enduse,
                sector=sector,
                fuel=region.ss_enduses_sectors_fuels[enduse][sector],
                tech_stock=weather_region.ss_tech_stock,
                heating_factor_y=weather_region.f_heat_ss_y,
                cooling_factor_y=weather_region.f_cooling_ss_y,
                fuel_fueltype_tech_p_by=assumptions.ss_fuel_tech_p_by[enduse]
                [sector],
                sig_param_tech=sig_param_tech,
                criterias=criterias,
                strategy_variables=strategy_variables,
                fueltypes_nr=lookups['fueltypes_nr'],
                fueltypes=lookups['fueltypes'],
                model_yeardays_nrs=assumptions.model_yeardays_nrs,
                enduse_overall_change=assumptions.enduse_overall_change,
                dw_stock=ss_dw_stock)

            # Add to list
            submodels.append(submodel)

    return submodels