Example #1
0
def main():
    args = parse_args()
    model_script = load_module(args.model_path)
    cfg = init_experiment(args)
    model, model_cfg = model_script.init_model(cfg)

    # prepare dataset
    dataset = YKDataset(window_size=cfg.window_size, dic_path=cfg.DIC_PATH)
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    kf = KFold(n_splits=cfg.n_folds, shuffle=True)
    for train_indices, val_indices in kf.split(indices):
        print('t', train_indices)
        print('v', val_indices)
        train_sampler = SubsetRandomSampler(train_indices)
        val_sampler = SubsetRandomSampler(val_indices)

        trainer = Trainer(model, cfg, model_cfg, dataset, train_sampler,
                          val_sampler, cfg.optimizer)

        logger.info(f'Total Epochs: {cfg.n_epochs}')
        for epoch in range(cfg.n_epochs):
            trainer.training(epoch)
            trainer.validation(epoch)

        cfg = init_experiment(args)
Example #2
0
def main():
    args = parse_args()
    model_script = load_module(args.model_path)
    cfg = init_experiment(args)
    model, model_cfg = model_script.init_model(cfg)

    # prepare dataset
    dataset = YKDataset(window_size=cfg.window_size, dic_path=cfg.DIC_PATH)
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(VAL_SPLIT * dataset_size))
    if SHUFFLE_DATASET:
        np.random.seed(RANDOM_SEED)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]
    train_sampler = SubsetRandomSampler(train_indices)
    val_sampler = SubsetRandomSampler(val_indices)

    trainer = Trainer(model, cfg, model_cfg, dataset, train_sampler,
                      val_sampler, cfg.optimizer)

    logger.info(f'Total Epochs: {cfg.n_epochs}')
    for epoch in range(cfg.n_epochs):
        trainer.training(epoch)
        trainer.validation(epoch)