Example #1
0
def build_phase(az, smooth=3):
    """"Phase" is an angle that increases with az while az increases, but
	continues to increase as az falls."""
    mi, ma = utils.minmax(az)
    phase = (az - mi) / (ma - mi)
    falling = phase[1:] - phase[:-1] < 0
    falling = np.concatenate([falling[:1], falling])
    phase[falling] = 2 - phase[falling]
    if smooth:
        phase = signal.medfilt(phase, 2 * smooth + 1)
    return phase
Example #2
0
area = enmap.read_map(args.area)
area = enmap.zeros((ncomp, ) + area.shape[-2:], area.wcs, dtype)

# First loop through all the tods and find out which are in which scanning
# pattern.
L.info("Scanning tods")
mypatids = {}
ids = filedb.scans[args.sel]
myinds = range(comm.rank, len(ids), comm.size)
ndet_array = 0
for ind, d in scanutils.scan_iterator(ids, myinds, actscan.ACTScan,
                                      filedb.data):
    id = ids[ind]
    # Determine which scanning pattern we have
    el = np.mean(d.boresight[:, 2])
    az1, az2 = utils.minmax(d.boresight[:, 1])
    pat = np.array([el, az1, az2]) / utils.degree
    pat = tuple(np.round(pat / args.bsize) * args.bsize)
    ndet_array = d.layout.ndet
    # And record it
    if pat not in mypatids:
        mypatids[pat] = []
    mypatids[pat].append(id)
ndet_array = comm.allreduce(ndet_array, mpi.MAX)

# Get list of all patterns
L.info("Gathering pattern lists")
mypats = mypatids.keys()
if len(mypats) == 0: mypats = np.zeros([0, 3])
pats = utils.allgatherv(mypats, comm)
pats = list(set(sorted([tuple(pat) for pat in pats])))
Example #3
0
            abscal /= d.mce_gain
        elif d.gain_mode == 'mce_compat':
            abscal /= d.mce_gain * 1217.8583043
        else:
            raise ValueError('gain_mode {} not understood'.format(d.gain_mode))

        with bench.show("calibrate"):
            d = actdata.calibrate(d, exclude=["autocut"])

        rel_gain = d.gain_raw.copy()  # To store later on.

        if d.ndet == 0 or d.nsamp < 2:
            raise errors.DataMissing("no data in tod")
        # Select detectors if needed.
        if dbox is not None:
            mid = np.mean(utils.minmax(d.point_template, 0), 0)
            off = d.point_template - mid
            good = np.all((off > dbox[0]) & (off < dbox[1]), -1)
            d = d.restrict(dets=d.dets[good])
    except errors.DataMissing as e:
        print("Skipping %s (%s)" % (id, e.message))
        continue
    print("Processing %s" % id, d.ndet, d.nsamp)

    # Very simple white noise model.
    with bench.show("ivar"):
        tod = d.tod
        del d.tod

        tod -= np.mean(tod, 1)[:, None]
        tod = tod.astype(dtype)
Example #4
0
t0 = args.t  # In mjd
ibox = np.array([
    [0, wt],
    [args.az - args.waz / 2., args.az + args.waz / 2.],
    [args.el - args.wel / 2., args.el + args.wel / 2.],
]).T + det_box / utils.degree
# units
ibox[:, 1:] *= utils.degree
wibox = ibox.copy()
wibox[:, :] = utils.widen_box(ibox[:, :])
srate = nsamp / wt

# output box
icorners = utils.box2corners(ibox)
ocorners = hor2cel(icorners.T, t0)
obox = utils.minmax(ocorners, -1)[:, :2]
wobox = utils.widen_box(obox)

# define a pixelization
shape, wcs = enmap.geometry(pos=wobox[:, ::-1],
                            res=args.res * utils.arcmin,
                            proj="cea")
nphi = int(2 * np.pi / (args.res * utils.arcmin))
map_orig = enmap.rand_gauss((ncomp, ) + shape, wcs).astype(dtype)
print "map shape %s" % str(map_orig.shape)

pbox = np.array([[0, 0], shape], dtype=int)
# define a test tod
bore = np.zeros([nsamp, 3], dtype=ptype)
bore[:, 0] = (wt * np.linspace(0, 1, nsamp, endpoint=False))
bore[:, 1] = (args.az + args.waz / 2 * utils.triangle_wave(
Example #5
0
if not args.transpose:
    imapfiles = args.ifiles[:nfile]
    ilayfiles = args.ifiles[nfile:]
else:
    imapfiles = args.ifiles[0::2]
    ilayfiles = args.ifiles[1::2]

# Read in our focalplane layouts so we can define our output map bounds
dets, offs, boxes, imaps = [], [], [], []
for i in range(nfile):
    det, off = files.read_point_template(ilayfiles[i])
    imap = enmap.read_map(imapfiles[i])
    if args.slice: imap = eval("imap" + args.slice)
    # We want y,x-ordering
    off = off[:, ::-1]
    box = utils.minmax(off, 0)
    dets.append(det)
    offs.append(off)
    boxes.append(box)
    imaps.append(imap)
box = utils.bounding_box(boxes)
box = utils.widen_box(box, rad * 5, relative=False)

# We assume that the two maps have the same pixelization
imaps = enmap.samewcs(np.array(imaps), imaps[0])
# Downsample by averaging
imaps = enmap.downgrade(imaps, (1, args.step))
naz = imaps.shape[-1]

# Ok, build our output geometry
shape, wcs = enmap.geometry(pos=box,
Example #6
0
if not args.transpose:
	imapfiles = args.ifiles[:nfile]
	ilayfiles = args.ifiles[nfile:]
else:
	imapfiles = args.ifiles[0::2]
	ilayfiles = args.ifiles[1::2]

# Read in our focalplane layouts so we can define our output map bounds
dets, offs, boxes, imaps = [], [], [], []
for i in range(nfile):
	det, off = files.read_point_template(ilayfiles[i])
	imap = enmap.read_map(imapfiles[i])
	if args.slice: imap = eval("imap"+args.slice)
	# We want y,x-ordering
	off = off[:,::-1]
	box = utils.minmax(off,0)
	dets.append(det)
	offs.append(off)
	boxes.append(box)
	imaps.append(imap)
box = utils.bounding_box(boxes)
box = utils.widen_box(box, rad*5, relative=False)

# We assume that the two maps have the same pixelization
imaps = enmap.samewcs(np.array(imaps), imaps[0])
# Downsample by averaging
imaps = enmap.downgrade(imaps, (1,args.step))
naz   = imaps.shape[-1]

# Ok, build our output geometry
shape, wcs = enmap.geometry(pos=box, res=args.res*utils.arcmin, proj="car", pre=(naz,))
Example #7
0
	try:
		if not args.sim:
			with bench.show("read"):
				d = actdata.read(entry)
		else:
			sim_id    = sim_ids[ind]
			sim_entry = filedb.data[sim_id]
			with bench.show("read"):
				d  = actdata.read(entry, ["boresight"])
				d += actdata.read(sim_entry, exclude=["boresight"])
		with bench.show("calibrate"):
			d = actdata.calibrate(d, exclude=["autocut"])
		if d.ndet == 0 or d.nsamp < 2: raise errors.DataMissing("no data in tod")
		# Select detectors if needed
		if dbox is not None:
			mid  = np.mean(utils.minmax(d.point_template, 0), 0)
			off  = d.point_template-mid
			good = np.all((off > dbox[0])&(off < dbox[1]),-1)
			d    = d.restrict(dets=d.dets[good])
	except errors.DataMissing as e:
		print "Skipping %s (%s)" % (id, e.message)
		continue
	print "Processing %s" % id, d.ndet, d.nsamp
	#broaden_beam_hor(d.tod, d, 1.35*utils.arcmin*utils.fwhm, 1.57*utils.arcmin*utils.fwhm)
	# Very simple white noise model. This breaks if the beam has been tod-smoothed by this point.
	with bench.show("ivar"):
		tod  = d.tod
		del d.tod
		tod -= np.mean(tod,1)[:,None]
		tod  = tod.astype(dtype)
		diff = tod[:,1:]-tod[:,:-1]
Example #8
0
t0 = args.t # In mjd
ibox = np.array([
		[0, wt],
		[args.az-args.waz/2., args.az+args.waz/2.],
		[args.el-args.wel/2., args.el+args.wel/2.],
	]).T + det_box/utils.degree
# units
ibox[:,1:] *= utils.degree
wibox = ibox.copy()
wibox[:,:] = utils.widen_box(ibox[:,:])
srate = nsamp/wt

# output box
icorners = utils.box2corners(ibox)
ocorners = hor2cel(icorners.T, t0)
obox     = utils.minmax(ocorners, -1)[:,:2]
wobox    = utils.widen_box(obox)

# define a pixelization
shape, wcs = enmap.geometry(pos=wobox[:,::-1], res=args.res*utils.arcmin, proj="cea")
nphi = int(2*np.pi/(args.res*utils.arcmin))
map_orig = enmap.rand_gauss((ncomp,)+shape, wcs).astype(dtype)
print "map shape %s" % str(map_orig.shape)

pbox = np.array([[0,0],shape],dtype=int)
# define a test tod
bore = np.zeros([nsamp,3],dtype=ptype)
bore[:,0] = (wt*np.linspace(0,1,nsamp,endpoint=False))
bore[:,1] = (args.az + args.waz/2*utils.triangle_wave(np.linspace(0,1,nsamp,endpoint=False)*20))*utils.degree
bore[:,2] = (args.el + args.wel/2*utils.triangle_wave(np.linspace(0,1,nsamp,endpoint=False)))*utils.degree
#bore = (ibox[None,0] + np.random.uniform(0,1,size=(nsamp,3))*(ibox[1]-ibox[0])[None,:]).astype(ptype)