Example #1
0
 def parse_option_data_by_symbol(self, symbol):
     df = pd.read_hdf(self.option_data_file, symbol)
     if df is not None:
         print '{} data exists, parse it to object...'.format(symbol)
         equity = Equity()
         equity.symbol = symbol
         equity.tradeTime = self.trade_date
         self.equity_records.append(equity)
         for index, row in df.iterrows():
             equity.lastPrice = row['Underlying_Price']
             option = Option()
             option.symbol = symbol
             option.tradeTime = self.trade_date,
             option.expirationDate = row['Expiry']
             option.optionType = row['Type']
             option.strikePrice = row['Strike']
             option.bidPrice = row['Bid']
             option.lastPrice = row['Last']
             option.priceChange = row['Change']
             option.volatility = row['ImpliedVolatility']
             option.theoretical = row['TheoreticalValue']
             option.delta = row['Delta']
             option.gamma = row['Gamma']
             option.rho = row['Rho']
             option.theta = row['Theta']
             option.vega = row['Vega']
             option.openInterest = row['Open Int']
             option.volume = row['Volume']
             self.option_records.append(option)
     else:
         print 'Missing data for {} ...'.format(symbol)
Example #2
0
 def combine_records(symbol, records):
     equity = Equity()
     equity.symbol = symbol
     equity.tradeTime = records[-1][0]
     equity.openPrice = records[0][1]
     equity.highPrice = max(map(lambda x:x[2], records))
     equity.lowPrice = min(map(lambda x:x[3],records))
     equity.lastPrice = records[-1][4]
     volume = sum(filter(lambda y: y is not None, map(lambda x: x[5], records)))
     if volume != 0:
         equity.volume = volume
     return equity
Example #3
0
 def load_equity_data_by_symbol(self, symbol):
     file_path = os.path.join(self.daily_path, 'equity_data',
                              '{}.json'.format(symbol))
     with open(file_path) as fs:
         json_data = json.load(fs)
     equity = Equity.loads(json_data['data'][0])
     return equity
Example #4
0
 def parse_record(self, content, symbol):
     json_data = json.loads(content)
     dic_data = json_data['Time Series (1min)']
     for key, value in dic_data.iteritems():
         time = key
         open = value['1. open']
         high = value['2. high']
         low = value['3. low']
         close = value['4. close']
         # volume = value['5. volume']
         equity = Equity(symbol, time, open, high, low, close, None, None)
         yield equity
Example #5
0
 def load_log(self, symbol, date):
     file_name = '%s%s.log' % (symbol, date.strftime('%Y%m%d'))
     path = PathMgr.get_data_path('quantopian_daily_min/%s' % file_name)
     content = read_file_to_string(path)
     lines = content.split('\n')
     filtered_lines = filter(lambda x: len(x) > 100, lines)
     lines = map(lambda x: string_fetch(x, 'PRINT ', ''), filtered_lines)
     close_list_str = ','.join(lines)
     prices_list = map(float, close_list_str.split(','))
     datetimes = TradeTime.generate_datetimes(date, date)
     equities = map(lambda x, y: Equity(symbol, x, y, y, y, y), datetimes,
                    prices_list)
     EquityMinDAO().insert(equities)
Example #6
0
 def parse_line(self, line, symbol):
     record = line.split(',')
     time = datetime.datetime.strptime('%s %s' % (record[0], record[1]),
                                       '%m/%d/%Y %H:%M')
     open_price = float(record[2])
     high_price = float(record[3])
     low_price = float(record[4])
     close_price = float(record[5])
     volume = float(record[6])
     if 9.5 * 60 <= time.hour * 60 + time.minute <= 16 * 60:
         return Equity(symbol, time, open_price, high_price, low_price,
                       close_price, close_price - open_price, volume)
     else:
         return None
Example #7
0
 def add_missing_data_in_real_time(
     self,
     symbol='SVXY',
 ):
     us_dt = datetime.datetime.now(tz=pytz.timezone('US/Eastern'))
     now = datetime.datetime(us_dt.year, us_dt.month, us_dt.day, us_dt.hour,
                             us_dt.minute, us_dt.second)
     if TradeTime.is_trade_day(now.date()):
         default_start_time = datetime.datetime(now.year, now.month,
                                                now.day, 9, 30, 0)
         start_time = max(
             default_start_time,
             datetime.datetime(now.year, now.month, now.day, now.hour - 1,
                               now.minute, 0))
         if now > start_time:
             if TradeTime.is_half_trade_day(now.date()):
                 default_end_time = datetime.datetime(
                     now.year, now.month, now.day, 13, 0, 0)
             else:
                 default_end_time = datetime.datetime(
                     now.year, now.month, now.day, 16, 0, 0)
             end_time = min(now, default_end_time)
             if end_time > start_time:
                 minutes_count = range((end_time - start_time).seconds /
                                       60 + 1)
                 trade_minutes = map(
                     lambda x: start_time + datetime.timedelta(minutes=x),
                     minutes_count)
                 # print trade_minutes
                 rows = self.get_time_and_price(symbol, start_time,
                                                end_time)
                 # print rows
                 j = 0
                 missing_records = []
                 for i, time in enumerate(trade_minutes):
                     if rows[j][0] > time:
                         if j > 0:
                             price = rows[j - 1][1]
                         else:
                             price = rows[0][1]
                         missing_records.append(
                             Equity(symbol, time, price, price, price,
                                    price, 0, 0))
                     else:
                         j = j + 1
                 if len(missing_records) > 0:
                     self.insert(missing_records)
                 return len(missing_records)
Example #8
0
 def add_missing_data(self, symbol='SVXY', validate_date=None):
     if validate_date is None:
         validate_date = TradeTime.get_latest_trade_date()
     start_time = datetime.datetime.fromordinal(validate_date.toordinal())
     end_time = start_time + datetime.timedelta(days=1)
     rows = self.get_time_and_price(symbol, start_time, end_time)
     j = 0
     missing_records = []
     for i, time in enumerate(TradeTime.get_all_trade_min(validate_date)):
         if j >= len(rows) or rows[j][0] > time:
             if j > 0:
                 price = rows[j - 1][1]
             else:
                 price = rows[0][1]
             missing_records.append(
                 Equity(symbol, time, price, price, price, price, 0, 0))
         else:
             j = j + 1
     if len(missing_records) > 0:
         self.insert(missing_records)
     return len(missing_records)
Example #9
0
 def parse_line(self, line, code):
     time = datetime.datetime.strptime(line[0:19], '%Y-%m-%d %H:%M:%S')
     price = float(line[21:])
     return Equity(code, time, price, price, price, price, price, None)